summaryrefslogtreecommitdiff
path: root/FSF-2020/approximations-and-optimizations
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/approximations-and-optimizations')
-rw-r--r--FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py78
1 files changed, 0 insertions, 78 deletions
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py
deleted file mode 100644
index 84052cc..0000000
--- a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py
+++ /dev/null
@@ -1,78 +0,0 @@
-from manimlib.imports import*
-
-#---- graphs of second-order partial derivatives of a function
-class SurfacesAnimation(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes()
- x_label = TextMobject('$x$').shift([5,0.5,0]) #---- x axis
- y_label = TextMobject('$y$').shift([0.5,4,0]).rotate(-4.5) #---- y axis
-
- #---- surface of function: f(x,y) = (x^2+y^2)^2
- surface_f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- ((u**2)+(v**2))**2
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[GREEN_D, GREEN_E]).scale(1)
-
- #---- surface of second-order partial derivative f_xx
- surface_fxx = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (3*u**2)+(v**2)
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(0.6)
-
- #---- surface of second-order partial derivative f_yy
- surface_fyy = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (u**2)+(3*v**2)
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[PURPLE_D, PURPLE_E]).scale(0.6).shift([0,0,0])
-
- #---- surface of second-order partial derivative f_xy = f_yx
- surface_fxy = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- 8*u*v
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[TEAL_D, TEAL_E]).scale(0.6)
-
- f_text= TextMobject("$f(x,y) = (x^2+y^2)^2$",color = GREEN).scale(0.7).to_corner(UL)
-
- fxx_text= TextMobject("$f_{xx} = 12x^2+4y^2$ (Concavity along x axis)",color = YELLOW).scale(0.5).to_corner(UL)
-
- fyy_text= TextMobject("$f_{yy} = 4x^2+12y^2$(Concavity along y axis)",color = PURPLE).scale(0.5).to_corner(UL)
-
- fxy_text= TextMobject("$f_{xy} = f_{yx} = 8xy$ (Twisting of the function)",color = TEAL).scale(0.5).to_corner(UL)
-
-
- self.set_camera_orientation(phi = 40 * DEGREES, theta = 45 * DEGREES)
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.add(x_label)
- self.add(y_label)
- self.wait(1)
- self.play(Write(surface_f))
- self.wait(2)
- self.play(FadeOut(f_text))
-
-
- self.play(ReplacementTransform(surface_f,surface_fxx))
-
- self.add_fixed_in_frame_mobjects(fxx_text)
- self.wait(2)
- self.play(FadeOut(fxx_text))
-
- self.play(ReplacementTransform(surface_fxx,surface_fyy))
- self.add_fixed_in_frame_mobjects(fyy_text)
- self.wait(2)
- self.play(FadeOut(fyy_text))
-
- self.play(ReplacementTransform(surface_fyy,surface_fxy))
- self.move_camera(phi = 35 * DEGREES, theta = 80 * DEGREES)
- self.add_fixed_in_frame_mobjects(fxy_text)
- self.wait(2)