summaryrefslogtreecommitdiff
path: root/FSF-2020/approximations-and-optimizations/Critical-Points
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/approximations-and-optimizations/Critical-Points')
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py94
1 files changed, 55 insertions, 39 deletions
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
index f3c16d4..e8cb08d 100644
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
+++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
@@ -1,61 +1,77 @@
from manimlib.imports import*
import math as m
-
-class CriticalPoint(ThreeDScene):
+#---- case 1: parial derivatives exist at critical point of the function
+class firstScene(ThreeDScene):
def construct(self):
axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
- surface = ParametricSurface( #---- partial derivatives of the funtion exists
+ #---- f(x,y) = e^(-10x^2-10y^2)
+ surface = ParametricSurface(
lambda u, v: np.array([
u,
v,
- m.exp(-10*u**2-10*v**2)]),u_min=-1,u_max=1, v_min=-1,v_max=1,checkerboard_colors=[TEAL_E,TEAL_D,TEAL_C]).fade(0.6).scale(3.5).shift([0,0,1.5])
-
- surface2 = ParametricSurface( #---- partial derivatives of the funtion does not exists
- lambda u, v: np.array([
- u,
- v,
- abs(u)+abs(v)]),u_min=-1.5,u_max=1.5, v_min=-1.5,v_max=1.5,checkerboard_colors=[TEAL_E,TEAL_D,TEAL_C,TEAL_B])
+ m.exp(-10*u**2-10*v**2)
+ ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B]).fade(0.6).scale(3.5).shift([0,0,1.5])
l1 = Line([0,0,3.75],[0,0,0],color = '#800000')
- d = Dot([0,0,3.75],color = '#800000') #---- critical point of surface
-
- d2 = Dot([0,0,0],color = '#800000') #---- critical point of surface2
-
- d_text = TextMobject("$\\frac{\\partial f}{\\partial x}=\\frac{\\partial f}{\\partial y} = 0$").scale(1).to_corner(UL)
-
- d2_text = TextMobject("$\\frac{\\partial f}{\\partial x}$ and/or $\\frac{\\partial f}{\\partial y}$ does not exist").scale(0.8).to_corner(UL)
-
- f_text = TextMobject("Critical Point of a function",color = YELLOW).shift([3,0,3.7]).scale(0.7)
+ d = Dot([0,0,3.75],color = '#800000') #---- critical point
- g_text = TextMobject("Critical Point of a function",color = YELLOW).shift(1*DOWN).scale(0.5)
-
- self.set_camera_orientation(phi=75*DEGREES,theta=90*DEGREES)
- self.add(axes)
- self.begin_ambient_camera_rotation(rate=0.2)
- self.play(Write(surface))
+ d_text = TextMobject("$\\frac{\\partial f}{\\partial x}=\\frac{\\partial f}{\\partial y} = 0$").scale(0.8).to_corner(UL)
+
+ f_text = TextMobject("Critical Point ",color = YELLOW).shift(3.4*UP).scale(0.5)
+
+ self.set_camera_orientation(phi = 45*DEGREES, theta = 40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
self.add_fixed_in_frame_mobjects(d_text)
+ self.begin_ambient_camera_rotation(rate = 0.2)
+ self.play(Write(surface))
self.wait(1)
self.play(Write(l1))
self.play(Write(d))
self.wait(1)
- self.move_camera(phi=0 * DEGREES,theta = 90*DEGREES)
- self.wait(2)
self.add_fixed_in_frame_mobjects(f_text)
- self.play(FadeOut(f_text),FadeOut(surface),FadeOut(axes),FadeOut(d_text),FadeOut(d),FadeOut(l1))
- self.wait(1)
- self.set_camera_orientation(phi=75*DEGREES,theta=60*DEGREES)
- self.add(axes)
- self.begin_ambient_camera_rotation(rate=0.3)
- self.add_fixed_in_frame_mobjects(d2_text)
- self.wait(1)
+ self.wait(3)
+ self.play(FadeOut(f_text),FadeOut(surface),FadeOut(axes),FadeOut(d_text),FadeOut(d),FadeOut(l1),FadeOut(label_x),FadeOut(label_y))
+
+
+#---- case 2: parial derivatives do not exist at critical point of the function
+class secondScene(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- g(x,y)= |x|+|y|
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ abs(u)+abs(v)
+ ]),u_min = -1.5, u_max = 1.5, v_min = -1.5, v_max = 1.5, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B])
+
+ d2 = Dot([0,0,0],color = '#800000') #---- critical point
+
+ d2_text = TextMobject("$\\frac{\\partial f}{\\partial x}$ and/or $\\frac{\\partial f}{\\partial y}$ does not exist").scale(0.7).to_corner(UL)
+
+ g_text = TextMobject("Critical Point",color = YELLOW).shift(1.2*RIGHT).scale(0.6)
+
+ self.set_camera_orientation(phi = 60*DEGREES, theta = 40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.add_fixed_in_frame_mobjects(d2_text)
+ self.begin_ambient_camera_rotation(rate = 0.2)
+ self.wait(1)
self.play(Write(surface2))
- l1.fade(0.4)
- self.play(Write(l1))
- self.play(Write(d2))
+ self.wait(1)
+ self.play(Write(d2))
+ self.wait(1)
self.add_fixed_in_frame_mobjects(g_text)
- self.wait(2)
-
+ self.wait(2)