summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py128
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py94
2 files changed, 222 insertions, 0 deletions
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py b/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
new file mode 100644
index 0000000..28eb07c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
@@ -0,0 +1,128 @@
+from manimlib.imports import *
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ expansion.scale(0.7)
+ return expansion
+
+class pieChart(Scene):
+ def construct(self):
+ circle1=Circle(radius=3,color=BLUE)
+ powerText=TextMobject("Power Series")
+ powerText.scale(0.8)
+ self.play(FadeIn(powerText))
+ self.play(ShowCreation(circle1))
+ self.wait(1)
+
+ powerGroup=VGroup(circle1,powerText)
+
+ self.play(ApplyMethod(powerGroup.scale,0.5))
+ self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
+ self.wait(0.5)
+ expansion_power_coeff=[]
+ variables_power=[]
+ expansion_power=formFormula(expansion_power_coeff,variables_power)
+ self.play(ReplacementTransform(powerText,expansion_power))
+ self.wait(1)
+
+ circle2=Circle(radius=1.5)
+ circle2.shift(2.2*UP)
+ expansion_geo_coeff=[0]*3
+ variables_geo=[0]*3
+ arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
+ expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_geo_coeff[i].set_color(GOLD_A)
+ variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_geo[2])
+ expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+ expansion_geo.scale(0.7)
+
+ self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
+ self.add(arrow1_2)
+ self.wait(1)
+
+ ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
+ for i in range(0,3):
+ ones[i].set_color(GOLD_A)
+ ones[0].shift(0.3*DOWN,5*LEFT)
+ ones[1].next_to(ones[0],buff=0.5)
+ ones[2].next_to(ones[1],buff=0.7)
+ self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
+ self.wait(1)
+ expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+
+ expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
+ expansion_geo_final.scale(0.8)
+ expansion_geo_final.shift(0.3*DOWN+4*LEFT)
+ self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
+ self.wait(1)
+
+ circle3=Circle(radius=1.5,color=GREEN)
+ circle3.shift(2.2*UP)
+ expansion_taylor_coeff=[0]*3
+ variables_taylor=[0]*3
+ arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
+ expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_taylor_coeff[i].set_color(GOLD_A)
+ variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_taylor[2])
+ expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+ expansion_taylor.scale(0.7)
+
+ self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
+ self.add(arrow1_3)
+ self.wait(1)
+
+ differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
+ for i in range(0,3):
+ differentials[i].set_color(GOLD_A)
+ differentials[0].shift(1.8*DOWN+1.15*LEFT)
+ differentials[1].shift(1.8*DOWN+0.45*LEFT)
+ differentials[2].shift(1.8*DOWN+0.45*RIGHT)
+ differentials[0].scale(0.35)
+ differentials[1].scale(0.35)
+ differentials[2].scale(0.35)
+ self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
+ self.wait(2)
+ expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+
+ self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
+ geoText=TextMobject("Geometric Series")
+ geoText.scale(0.7)
+ geoText.shift(4*LEFT+0.3*DOWN)
+ taylorText=TextMobject("Taylor Series")
+ taylorText.scale(0.7)
+ taylorText.shift(1.8*DOWN)
+ self.play(FadeIn(geoText),FadeIn(taylorText))
+ self.wait(1)
+
+ soOntext=TextMobject("So on..!")
+ soOntext.shift(4*RIGHT)
+ soOntext.scale(0.8)
+ self.play(FadeIn(soOntext))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
new file mode 100644
index 0000000..72356c6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
@@ -0,0 +1,94 @@
+from manimlib.imports import *
+import numpy as np
+
+
+class convergence(Scene):
+ def construct(self):
+ originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
+ originalFormula.set_color(RED)
+ self.play(Write(originalFormula))
+ self.wait(1)
+ self.play(ApplyMethod(originalFormula.shift,2.7*UP))
+ self.wait(1)
+
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ termsTogetherString="+".join(terms)
+ termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether.scale(0.8)
+ termsTogether.shift(2.7*UP)
+ self.play(ReplacementTransform(originalFormula,termsTogether))
+ self.wait(1)
+
+ termMobjectRect=[0]*12
+ termMobject=TextMobject(terms[0])
+ termMobject.shift(2.7*UP+6.2*LEFT)
+ for i in range(1,13):
+ termMobjectOld=termMobject
+ termMobjectOld.scale(0.8)
+ if(i<12):
+ termMobject=TextMobject(terms[i])
+ termMobject.next_to(termMobjectOld)
+ if(i==1):
+ rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
+ rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
+ rectDefine.scale(0.7)
+ rectDefine.shift(3.2*DOWN)
+ self.play(Write(rectDefine))
+ self.wait(1)
+ if(i==2):
+ ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
+ ratio.set_color(RED)
+ ratio.scale(0.7)
+ ratio.move_to(3.2*DOWN)
+ inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
+ inequality.set_color(RED)
+ inequality.scale(0.7)
+ inequality.move_to(3.2*DOWN)
+ self.play(FadeOut(rectDefine))
+ self.play(Write(ratio))
+ self.wait(1)
+ self.play(ReplacementTransform(ratio,inequality))
+ self.wait(1)
+ #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
+ #rectangles[p] = termMobjectRect
+ #p+=1
+ self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
+
+ uparrow=TextMobject("$\\uparrow$")
+ uparrow.set_color(GREEN)
+ uparrow.scale(6)
+ uparrow.shift(4*RIGHT+0.5*DOWN)
+ self.play(ShowCreation(uparrow))
+ self.wait(1)
+
+ converges=TextMobject("Converges!")
+ converges.set_color(RED)
+ converges.scale(0.6)
+ converges.next_to(uparrow)
+ self.play(FadeIn(converges))
+ self.wait(2)
+
+ self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
+ self.wait(0.5)
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ self.play(ApplyMethod(rect.scale,0.2))
+ for i in range(0,12):
+ self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
+ func=TextMobject("$\\approx$","$f(x)$")
+ func.set_color_by_tex_to_color_map({"$f(x)$":RED})
+ func.scale(0.8)
+ func.shift(DOWN+4.5*RIGHT+0.1*UP)
+ self.play(FadeIn(func))
+
+ rightarrow=TextMobject("$\\rightarrow$")
+ rightarrow.set_color(GREEN)
+ rightarrow.scale(4)
+ rightarrow.shift(2*DOWN)
+ converges=TextMobject("Hence even the","sum converges!")
+ converges.set_color_by_tex_to_color_map({"sum converges!":RED})
+ converges.move_to(3*DOWN)
+ converges.scale(0.7)
+ self.play(Write(rightarrow),FadeIn(converges))
+ self.wait(2)