diff options
author | G Sri Harsha | 2020-05-19 23:58:33 +0530 |
---|---|---|
committer | GitHub | 2020-05-19 23:58:33 +0530 |
commit | 6391e4ee7b577235ab4e50ab59e44f58ca0cf50a (patch) | |
tree | d046b0903b6f43f081979391cc8edbdce6dbe491 /FSF-2020/series-and-transformations | |
parent | 828202816418ededf16deb15d3cf37d930ad5452 (diff) | |
download | FSF-mathematics-python-code-archive-6391e4ee7b577235ab4e50ab59e44f58ca0cf50a.tar.gz FSF-mathematics-python-code-archive-6391e4ee7b577235ab4e50ab59e44f58ca0cf50a.tar.bz2 FSF-mathematics-python-code-archive-6391e4ee7b577235ab4e50ab59e44f58ca0cf50a.zip |
Add files via upload
Diffstat (limited to 'FSF-2020/series-and-transformations')
5 files changed, 622 insertions, 0 deletions
diff --git a/FSF-2020/series-and-transformations/Power Series/script1.py b/FSF-2020/series-and-transformations/Power Series/script1.py new file mode 100644 index 0000000..28eb07c --- /dev/null +++ b/FSF-2020/series-and-transformations/Power Series/script1.py @@ -0,0 +1,128 @@ +from manimlib.imports import * + + +def formFormula(coeff_list,variable_list): + coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] + coeff_list[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + coeff_list[i].set_color(GOLD_A) + variable_list[i].next_to(coeff_list[i],buff=0.1) + if i!=2: + coeff_list[i+1].next_to(variable_list[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variable_list[2]) + expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) + expansion.scale(0.7) + return expansion + +class pieChart(Scene): + def construct(self): + circle1=Circle(radius=3,color=BLUE) + powerText=TextMobject("Power Series") + powerText.scale(0.8) + self.play(FadeIn(powerText)) + self.play(ShowCreation(circle1)) + self.wait(1) + + powerGroup=VGroup(circle1,powerText) + + self.play(ApplyMethod(powerGroup.scale,0.5)) + self.play(ApplyMethod(powerGroup.move_to,2.2*UP)) + self.wait(0.5) + expansion_power_coeff=[] + variables_power=[] + expansion_power=formFormula(expansion_power_coeff,variables_power) + self.play(ReplacementTransform(powerText,expansion_power)) + self.wait(1) + + circle2=Circle(radius=1.5) + circle2.shift(2.2*UP) + expansion_geo_coeff=[0]*3 + variables_geo=[0]*3 + arrow1_2=Line(start=0.7*UP,end=2.5*LEFT) + expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + for i in range(0,3): + expansion_geo_coeff[i].set_color(GOLD_A) + variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] + expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1) + if i!=2: + expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variables_geo[2]) + expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots) + expansion_geo.scale(0.7) + + self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN)) + self.add(arrow1_2) + self.wait(1) + + ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")] + for i in range(0,3): + ones[i].set_color(GOLD_A) + ones[0].shift(0.3*DOWN,5*LEFT) + ones[1].next_to(ones[0],buff=0.5) + ones[2].next_to(ones[1],buff=0.7) + self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2])) + self.wait(1) + expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots) + + expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$") + expansion_geo_final.scale(0.8) + expansion_geo_final.shift(0.3*DOWN+4*LEFT) + self.play(ReplacementTransform(expansion_geo,expansion_geo_final)) + self.wait(1) + + circle3=Circle(radius=1.5,color=GREEN) + circle3.shift(2.2*UP) + expansion_taylor_coeff=[0]*3 + variables_taylor=[0]*3 + arrow1_3=Line(start=0.7*UP,end=DOWN*0.3) + expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + for i in range(0,3): + expansion_taylor_coeff[i].set_color(GOLD_A) + variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] + expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1) + if i!=2: + expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variables_taylor[2]) + expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots) + expansion_taylor.scale(0.7) + + self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN)) + self.add(arrow1_3) + self.wait(1) + + differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")] + for i in range(0,3): + differentials[i].set_color(GOLD_A) + differentials[0].shift(1.8*DOWN+1.15*LEFT) + differentials[1].shift(1.8*DOWN+0.45*LEFT) + differentials[2].shift(1.8*DOWN+0.45*RIGHT) + differentials[0].scale(0.35) + differentials[1].scale(0.35) + differentials[2].scale(0.35) + self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2])) + self.wait(2) + expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots) + + self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final)) + geoText=TextMobject("Geometric Series") + geoText.scale(0.7) + geoText.shift(4*LEFT+0.3*DOWN) + taylorText=TextMobject("Taylor Series") + taylorText.scale(0.7) + taylorText.shift(1.8*DOWN) + self.play(FadeIn(geoText),FadeIn(taylorText)) + self.wait(1) + + soOntext=TextMobject("So on..!") + soOntext.shift(4*RIGHT) + soOntext.scale(0.8) + self.play(FadeIn(soOntext)) + self.wait(2) diff --git a/FSF-2020/series-and-transformations/Power Series/script2.py b/FSF-2020/series-and-transformations/Power Series/script2.py new file mode 100644 index 0000000..72356c6 --- /dev/null +++ b/FSF-2020/series-and-transformations/Power Series/script2.py @@ -0,0 +1,94 @@ +from manimlib.imports import * +import numpy as np + + +class convergence(Scene): + def construct(self): + originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$") + originalFormula.set_color(RED) + self.play(Write(originalFormula)) + self.wait(1) + self.play(ApplyMethod(originalFormula.shift,2.7*UP)) + self.wait(1) + + terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"] + termsTogetherString="+".join(terms) + termsTogether=TextMobject(termsTogetherString+"...") + termsTogether.scale(0.8) + termsTogether.shift(2.7*UP) + self.play(ReplacementTransform(originalFormula,termsTogether)) + self.wait(1) + + termMobjectRect=[0]*12 + termMobject=TextMobject(terms[0]) + termMobject.shift(2.7*UP+6.2*LEFT) + for i in range(1,13): + termMobjectOld=termMobject + termMobjectOld.scale(0.8) + if(i<12): + termMobject=TextMobject(terms[i]) + termMobject.next_to(termMobjectOld) + if(i==1): + rectDefine=TextMobject("Here","each rectangle","represents the","value of the term") + rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW}) + rectDefine.scale(0.7) + rectDefine.shift(3.2*DOWN) + self.play(Write(rectDefine)) + self.wait(1) + if(i==2): + ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$") + ratio.set_color(RED) + ratio.scale(0.7) + ratio.move_to(3.2*DOWN) + inequality=TextMobject("$a_{ n+1 } < a_{ n }$") + inequality.set_color(RED) + inequality.scale(0.7) + inequality.move_to(3.2*DOWN) + self.play(FadeOut(rectDefine)) + self.play(Write(ratio)) + self.wait(1) + self.play(ReplacementTransform(ratio,inequality)) + self.wait(1) + #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i)) + termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i)) + termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i) + #rectangles[p] = termMobjectRect + #p+=1 + self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1])) + + uparrow=TextMobject("$\\uparrow$") + uparrow.set_color(GREEN) + uparrow.scale(6) + uparrow.shift(4*RIGHT+0.5*DOWN) + self.play(ShowCreation(uparrow)) + self.wait(1) + + converges=TextMobject("Converges!") + converges.set_color(RED) + converges.scale(0.6) + converges.next_to(uparrow) + self.play(FadeIn(converges)) + self.wait(2) + + self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality)) + self.wait(0.5) + rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11]) + self.play(ApplyMethod(rect.scale,0.2)) + for i in range(0,12): + self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3)) + func=TextMobject("$\\approx$","$f(x)$") + func.set_color_by_tex_to_color_map({"$f(x)$":RED}) + func.scale(0.8) + func.shift(DOWN+4.5*RIGHT+0.1*UP) + self.play(FadeIn(func)) + + rightarrow=TextMobject("$\\rightarrow$") + rightarrow.set_color(GREEN) + rightarrow.scale(4) + rightarrow.shift(2*DOWN) + converges=TextMobject("Hence even the","sum converges!") + converges.set_color_by_tex_to_color_map({"sum converges!":RED}) + converges.move_to(3*DOWN) + converges.scale(0.7) + self.play(Write(rightarrow),FadeIn(converges)) + self.wait(2) diff --git a/FSF-2020/series-and-transformations/Power Series/script3.py b/FSF-2020/series-and-transformations/Power Series/script3.py new file mode 100644 index 0000000..f710f42 --- /dev/null +++ b/FSF-2020/series-and-transformations/Power Series/script3.py @@ -0,0 +1,156 @@ +from manimlib.imports import* +import math + +class intro(Scene): + def construct(self): + introText1=TextMobject("Let's analyse") + introText2=TextMobject("for") + function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$") + function_main.set_color(GREEN) + introText1.scale(1.2) + introText1.shift(2*UP) + introText2.scale(0.7) + introText2.shift(UP) + function_main.scale(2) + function_main.shift(DOWN) + function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$") + function_expan.set_color(RED) + function_expan.scale(1.2) + function_expan.shift(2*UP) + + self.play(Write(introText1)) + self.play(FadeIn(introText2)) + self.wait(0.5) + self.play(Write(function_main)) + self.wait(1) + + self.play(FadeOut(introText1),FadeOut(introText2)) + self.play(ApplyMethod(function_main.shift,3*UP)) + self.wait(0.5) + self.play(ReplacementTransform(function_main,function_expan)) + self.wait(1) + self.play(ApplyMethod(function_expan.scale,0.5)) + function_expan.to_edge(UP+RIGHT) + self.play(ReplacementTransform(function_expan,function_expan)) + self.wait(1) + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-1, 2, 1), + "y_labeled_nums": range(0,2,1) + } + + def construct(self): + + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$") + function_expan.set_color(RED) + function_expan.scale(0.6) + function_expan.to_edge(UP+RIGHT) + self.add(function_expan) + + self.setup_axes(animate=True) + + eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")] + for i in range(0,len(eqText)): + eqText[i].scale(0.6) + eqText[i].set_color(BLUE) + eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit) + eqTextTerm=TextMobject("And so on..!") + eqTextTerm.set_color(BLUE) + eqTextTerm.scale(0.6) + eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit) + equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8) + equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7) + equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6) + equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45) + equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35) + equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3) + equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25) + equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2) + equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15) + equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15) + + textBtwAnim1=TextMobject("Here the graph just","oscilates") + textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE}) + textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)") + textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW}) + textBtwAnim3=TextMobject("$x=1$") + textBtwAnim1.scale(0.4) + textBtwAnim2.scale(0.4) + textBtwAnim3.scale(1.2) + textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT) + textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT) + textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT) + + self.play(ShowCreation(equation1),run_time=0.8) + self.add(eqText[0]) + self.wait(1) + self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1])) + self.wait(0.5) + self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2])) + self.wait(0.4) + self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3])) + self.wait(0.3) + self.play(FadeOut(eqText[3])) + self.play(FadeIn(eqTextTerm)) + self.play(Write(textBtwAnim1),Write(textBtwAnim2)) + self.play(FadeIn(textBtwAnim3)) + self.play(ReplacementTransform(equation4,equation5)) + self.wait(0.2) + self.play(ReplacementTransform(equation5,equation6)) + self.wait(0.2) + self.play(ReplacementTransform(equation6,equation7)) + self.wait(0.2) + self.play(ReplacementTransform(equation7,equation8)) + self.wait(0.2) + self.play(ReplacementTransform(equation8,equation9)) + self.wait(0.2) + self.play(ReplacementTransform(equation9,equation10)) + self.wait(1) + + self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm)) + self.wait(1) + + convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE) + divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED) + divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED) + circle1=Circle(radius=0.01,color=PURPLE_E) + circle2=Circle(radius=0.01,color=PURPLE_E) + circle1.shift(ORIGIN+LEFT*x_each_unit) + circle2.shift(ORIGIN+RIGHT*x_each_unit) + convergeText=TextMobject("Converges") + divergeText1=TextMobject("Diverges") + divergeText2=TextMobject("Diverges") + convergeText.set_color(GREEN) + divergeText1.set_color(RED) + divergeText2.set_color(RED) + convergeText.scale(0.5) + divergeText1.scale(0.5) + divergeText2.scale(0.5) + convergeText.shift(1.6*UP) + divergeText1.shift(0.3*UP+1.5*LEFT) + divergeText2.shift(0.3*UP+1.5*RIGHT) + self.play(Write(divergeLineLeft),Write(divergeLineRight)) + self.play(FadeIn(convergeLine)) + self.wait(0.5) + self.play(FadeOut(self.axes)) + self.play(Write(circle1),Write(circle2)) + self.wait(0.5) + self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN)) + self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2)) + self.wait(2) + diff --git a/FSF-2020/series-and-transformations/Power Series/script4.py b/FSF-2020/series-and-transformations/Power Series/script4.py new file mode 100644 index 0000000..412d20c --- /dev/null +++ b/FSF-2020/series-and-transformations/Power Series/script4.py @@ -0,0 +1,108 @@ +from manimlib.imports import * +import math + +class intro(Scene): + def construct(self): + introText1=TextMobject("Consider the","above","example..") + introText1.scale(0.8) + introText1.set_color_by_tex_to_color_map({"above":YELLOW}) + self.play(Write(introText1)) + self.wait(1) + +class graphScene(GraphScene,MovingCameraScene): + CONFIG = { + "x_min": -5, + "x_max": 5, + "y_min": -5, + "y_max": 5, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-1, 2, 1), + "y_labeled_nums": range(0,2,1), + "y_axis_height":7, + "x_axis_width":7 + } + + def setup(self): + GraphScene.setup(self) + MovingCameraScene.setup(self) + + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$") + function_expan.scale(0.6) + function_expan.set_color(RED) + function_expan.to_edge(UP+RIGHT) + self.add(function_expan) + + self.setup_axes() + + equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1) + self.play(ShowCreation(equation)) + self.wait(1) + + dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN) + dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN) + dashLineLeft.shift(ORIGIN+LEFT*x_each_unit) + dashLineRight.shift(ORIGIN+RIGHT*x_each_unit) + radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit) + rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit) + circle=Circle(radius=x_each_unit) + movingPoint=Circle(radius=0.025) + movingPoint.shift(ORIGIN+RIGHT*x_each_unit) + circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1) + circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1) + + self.play(Write(dashLineLeft),Write(dashLineRight)) + self.wait(1) + + equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1) + self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated)) + self.wait(0.5) + self.play(Write(radiusLine)) + self.play(MoveAlongPath(movingPoint,circleEq1)) + self.play(MoveAlongPath(movingPoint,circleEq2)) + self.play(FadeIn(circle)) + self.wait(1) + + radiusText=TextMobject("Radius of convergence") + radiusText.scale(0.14) + radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2) + + self.play(Write(radiusText)) + self.wait(0.6) + + self.camera_frame.save_state() + self.camera_frame.set_width(5.5) + self.play(self.camera_frame.move_to, ORIGIN) + self.wait(1) + self.camera_frame.set_width(14) + self.wait(1.3) + + self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint)) + extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT) + self.play(Write(extendLine)) + doubleArrow=TextMobject("$\longleftrightarrow$") + doubleArrow.scale(1.6) + doubleArrow.set_color(BLUE) + doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5) + self.play(FadeIn(doubleArrow)) + self.wait(1) + rangeText=TextMobject("Interval of convergence") + rangeText.scale(0.15) + rangeText.shift(ORIGIN+y_each_unit*DOWN) + self.play(Write(rangeText)) + self.wait(0.6) + + self.camera_frame.save_state() + self.camera_frame.set_width(5.5) + self.play(self.camera_frame.move_to, ORIGIN) + self.wait(1) + self.camera_frame.set_width(14) + self.wait(1.5) diff --git a/FSF-2020/series-and-transformations/Power Series/script5.py b/FSF-2020/series-and-transformations/Power Series/script5.py new file mode 100644 index 0000000..e9681aa --- /dev/null +++ b/FSF-2020/series-and-transformations/Power Series/script5.py @@ -0,0 +1,136 @@ +from manimlib.imports import * +import math + +class uniformlyConvergent(Scene): + def construct(self): + introText1=TextMobject("Again consider the","above","example") + introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)") + introText3=TextMobject("Lets analyse..","!") + introText1.scale(0.8) + introText2.scale(0.7) + introText3.scale(0.9) + introText3.shift(DOWN) + introText1.set_color_by_tex_to_color_map({"above":YELLOW}) + introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW}) + introText3.set_color_by_tex_to_color_map({"!":GREEN}) + self.play(Write(introText1)) + self.wait(0.5) + self.play(FadeOut(introText1)) + self.play(Write(introText2)) + self.play(FadeIn(introText3)) + self.wait(2) + + +def gety(x,n): + ans=0 + for i in range(0,n+1): + if(i%2==0): + ans+=(math.pow(x,2*i)) + else: + ans-=(math.pow(x,2*i)) + return ans + +def makeSeries(x,points,x_each_unit,y_each_unit): + p=0 + for point in points: + y=gety(x,p) + point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y) + p+=1 + +def makeLines(x,numPoints,x_each_unit,y_each_unit): + lines=[0]*numPoints + for i in range(0,numPoints-1): + y=gety(x,i) + y_next=gety(x,i+1) + lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED) + return lines + +class graphScene(GraphScene,MovingCameraScene): + CONFIG = { + "x_min": -6, + "x_max": 6, + "y_min": -5, + "y_max": 5, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$k$", + "y_axis_label": "$f(\\frac{1}{2})_k$", + "exclude_zero_label": True, + "x_axis_width":7, + "y_axis_height":7 + } + + def setup(self): + GraphScene.setup(self) + MovingCameraScene.setup(self) + + + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$") + sequence.set_color(RED) + sequence.scale(0.35) + sequence.to_edge(UP+RIGHT) + formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $") + formula.set_color(PURPLE_C) + formula.scale(0.4) + formula.shift(5.3*RIGHT+3*UP) + fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT) + fLine.shift(ORIGIN+(4/5)*y_each_unit*UP) + fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $") + fLineText.set_color(RED) + fLineText.scale(0.3) + fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT) + points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)] + makeSeries(0.5,points,x_each_unit,y_each_unit) + lines=makeLines(0.5,6,x_each_unit,y_each_unit) + + + self.add(sequence) + self.add(formula) + self.setup_axes(animate=True) + self.play(Write(fLine)) + self.add(fLineText) + for p in points: + self.add(p) + for p in range(0,5): + self.play(Write(lines[p])) + self.wait(0.5) + self.camera_frame.save_state() + self.camera_frame.set_width(0.6) + self.play(self.camera_frame.move_to, points[0]) + self.wait(0.4) + self.play(self.camera_frame.move_to, points[1]) + self.wait(0.4) + self.play(self.camera_frame.move_to, points[2]) + self.wait(0.3) + self.play(self.camera_frame.move_to, points[3]) + self.wait(1) + self.play(self.camera_frame.move_to,ORIGIN) + self.camera_frame.set_width(14) + self.wait(1) + + explanation1=TextMobject("Since the series","converges","to") + explanation1.set_color_by_tex_to_color_map({"converges":YELLOW}) + explanation2=TextMobject("$\\frac {4}{5}$") + explanation2.set_color(BLUE) + explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,") + explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW}) + explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$") + explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED}) + explanation1.scale(0.5) + explanation3.scale(0.5) + explanation1.shift(1.8*DOWN+3.5*RIGHT) + explanation2.shift(2.4*DOWN+3.5*RIGHT) + explanation3.shift(1.8*DOWN+3.5*RIGHT) + explanation4.shift(2.4*DOWN+3.5*RIGHT) + + self.play(Write(explanation1)) + self.play(FadeIn(explanation2)) + self.wait(1) + self.play(FadeOut(explanation1),FadeOut(explanation2)) + self.play(Write(explanation3)) + self.play(Write(explanation4)) + self.wait(2) |