diff options
author | simranchhattani | 2020-07-11 23:30:40 +0530 |
---|---|---|
committer | GitHub | 2020-07-11 23:30:40 +0530 |
commit | 8cc58b1a6fc3f705759cf789f4dbc6fc247c21a1 (patch) | |
tree | 100a6512ae5e3b149a0ddbc5da1ad5e15262a875 /FSF-2020/linear-algebra | |
parent | b54198b0db47c50f6584eb5e0b9ec54d2c1608b6 (diff) | |
download | FSF-mathematics-python-code-archive-8cc58b1a6fc3f705759cf789f4dbc6fc247c21a1.tar.gz FSF-mathematics-python-code-archive-8cc58b1a6fc3f705759cf789f4dbc6fc247c21a1.tar.bz2 FSF-mathematics-python-code-archive-8cc58b1a6fc3f705759cf789f4dbc6fc247c21a1.zip |
Delete Inner_Product_Space_Example.py
Diffstat (limited to 'FSF-2020/linear-algebra')
-rw-r--r-- | FSF-2020/linear-algebra/vector-spaces/Vector-Spaces/Inner-Product_Spaces/Inner_Product_Space_Example.py | 175 |
1 files changed, 0 insertions, 175 deletions
diff --git a/FSF-2020/linear-algebra/vector-spaces/Vector-Spaces/Inner-Product_Spaces/Inner_Product_Space_Example.py b/FSF-2020/linear-algebra/vector-spaces/Vector-Spaces/Inner-Product_Spaces/Inner_Product_Space_Example.py deleted file mode 100644 index 1f98bad..0000000 --- a/FSF-2020/linear-algebra/vector-spaces/Vector-Spaces/Inner-Product_Spaces/Inner_Product_Space_Example.py +++ /dev/null @@ -1,175 +0,0 @@ -from manimlib.imports import *
-from scipy import sin,cos
-class Inner_Product_Space_Example(GraphScene):
- CONFIG = {
- "x_min" : 0,
- "x_max" : 5,
- "y_min" : 0,
- "y_max" : 6,
- "y_tick_frequency" : 1,
- "x_tick_frequency" : 1,
- "axes_color":LIGHT_GRAY,
- "x_labeled_nums" : list(range(6)),
- "y_labeled_nums" : list(range(6))
- }
- def construct(self):
- self.setup_axes(animate=True)
- curve1 = self.get_graph(lambda x : sin(x), x_min=0,x_max=2.3,color=RED)
- curve2 = self.get_graph(lambda x : x, x_min=0,x_max=2.3,color=DARK_BLUE)
- curve3 = self.get_graph(lambda x : 1.4, x_min=0,x_max=2.3,color=GREEN)
- text1 = TextMobject(r"$f(x)$").scale(0.5).shift(1.77*DOWN+0.55*RIGHT)
-
- text2 = TextMobject(r"$g(x)$").scale(0.5).shift(0.15*DOWN+0.55*RIGHT)
- text3 = TextMobject(r"$h(x)$").scale(0.5).shift(1.03*DOWN+0.55*RIGHT)
-
- self.play(ShowCreation(curve1),ShowCreation(text1))
- self.wait(1)
- self.play(ShowCreation(curve2),ShowCreation(text2))
- self.wait(1)
- self.play(ShowCreation(curve3),ShowCreation(text3))
- self.wait(2)
- curve4 = self.get_graph(lambda x : sin(x) + x, x_min=0,x_max=2.3,color=YELLOW)
- text4 = TextMobject(r"$f(x) + g(x)$").scale(0.5).shift(0.6*UP+1*RIGHT)
- self.wait(1.5)
-
- self.play(ShowCreation(curve4),ShowCreation(text4),FadeOut(curve2),FadeOut(text2),FadeOut(curve1),FadeOut(text1))
- self.wait(1.5)
- text5 = TextMobject(r"\text{$<f(x) + g(x), h(x)>$ = ",r"\text{$\int_{a}^{b} (f(x) + g(x))h(x)$ $dx$}").scale(0.57).shift(4*RIGHT+3.5*UP)
- text5[1].set_color(ORANGE)
- self.play(ShowCreation(text5))
-
- curve5 = self.get_graph(lambda x : (sin(x) + x)*1.6, x_min=0,x_max=2.3,color=ORANGE)
- text6 = TextMobject(r"$(f(x) + g(x))\cdot h(x)$").scale(0.5).shift(2.2*UP+1.4*RIGHT)
- area1 = self.get_area(curve5,0,2.3)
- area1.set_color(ORANGE)
- self.wait(1)
- self.play(FadeOut(curve4),FadeOut(text4),FadeOut(curve3),FadeOut(text3),ShowCreation(curve5),ShowCreation(text6),ShowCreation(area1))
- self.wait(2)
- text7 = TextMobject(r"\text{$<f(x), h(x)>$ = ",r"\text{$\int_{a}^{b} (f(x)h(x)$ $dx$}").scale(0.57).shift(5*RIGHT+3*UP)
- text7[1].set_color(BLUE)
- self.play(ShowCreation(text7))
- self.wait(1.5)
- curve6 = self.get_graph(lambda x : (sin(x))*1.6, x_min=0,x_max=2.3,color=BLUE)
- text8 = TextMobject(r"$f(x)\cdot h(x)$").scale(0.5).shift(1.4*DOWN+0.8*RIGHT)
- area2 = self.get_area(curve6,0,2.3)
- self.play(ShowCreation(curve6),ShowCreation(text8),ShowCreation(area2))
- self.wait(1.5)
- text9 = TextMobject(r"\text{$<g(x), h(x)>$ = ",r"\text{$\int_{a}^{b} (g(x)h(x)$ $dx$}").scale(0.57).shift(5*RIGHT+2.5*UP)
- text9[1].set_color(MAROON_B)
- self.play(ShowCreation(text9))
- self.wait(1.5)
- curve7 = self.get_graph(lambda x : x*1.6, x_min=0,x_max=2.3,color=MAROON_B)
- text10 = TextMobject(r"$g(x)\cdot h(x)$").scale(0.5).shift(0.8*RIGHT+1*UP)
- area3 = self.get_area(curve7,0,2.3)
- area3.set_color(MAROON_B)
- self.play(ShowCreation(curve7),ShowCreation(text10),ShowCreation(area3))
- self.wait(2.6)
- curve8 = self.get_graph(lambda x : (sin(x))*1.6 + x*1.6, x_min=0,x_max=2.3,color=RED_C)
- area4 = self.get_area(curve8,0,2.3)
- area4.set_color(RED_C)
- text11 = TextMobject(r"$f(x)h(x) + g(x)h(x)$").scale(0.5).shift(2.2*UP + 1.4*RIGHT)
- self.play(FadeOut(curve6),FadeOut(text8),FadeOut(curve7),FadeOut(text10),FadeOut(area2),FadeOut(area3),ShowCreation(curve8),ShowCreation(area4))
- self.wait(1)
- self.play(Transform(text6,text11))
- self.wait(1.7)
- text12 = TextMobject(r"$<f(x) + g(x), h(x)>$ = $<f(x), h(x)>$ + $<g(x), h(x)>$").scale(0.465).shift(0.7*UP+4*RIGHT)
- rect1 = Rectangle(height=0.5)
- rect1.surround(text12)
- self.play(ShowCreation(text12),ShowCreation(rect1))
- self.wait(3)
- self.play(FadeOut(text6),FadeOut(text5),FadeOut(text7),FadeOut(text9),FadeOut(text12),FadeOut(rect1),FadeOut(curve8),FadeOut(area4),FadeOut(text11),FadeOut(curve5),FadeOut(area1))
-
- curve2.set_color(ORANGE)
- self.play(ShowCreation(curve1),ShowCreation(text1))
- self.wait(1)
- self.play(ShowCreation(curve2),ShowCreation(text2))
- self.wait(2)
- curve9 = self.get_graph(lambda x : 2*sin(x), x_min=0,x_max=2.3,color=GREEN)
- text13 = TextMobject(r"$2f(x)$").scale(0.5).shift(1.1*DOWN+0.55*RIGHT)
- self.play(Transform(curve1,curve9),Transform(text1,text13))
- self.wait(1.5)
-
- text14 = TextMobject(r"\text{$<2f(x), g(x)>$ = ",r"\text{$\int_{a}^{b} (2f(x))g(x)$ $dx$}").scale(0.57).shift(4*RIGHT+3.5*UP)
- text14[1].set_color(YELLOW)
- self.play(ShowCreation(text14))
- self.wait(2.2)
- curve10 = self.get_graph(lambda x : 2*sin(x)*x, x_min=0,x_max=2.3,color=YELLOW)
- text15 = TextMobject(r"$2f(x)\cdot g(x)$").scale(0.5).shift(1*RIGHT+0.97*UP)
- area5 = self.get_area(curve10,0,2.3)
- area5.set_color(YELLOW)
- self.play(ShowCreation(area5),ShowCreation(curve10),ShowCreation(text15),FadeOut(curve1),FadeOut(text1),FadeOut(curve2),FadeOut(text2))
- self.wait(2)
- text16 = TextMobject(r"\text{$<f(x), g(x)>$ = ",r"\text{$\int_{a}^{b} f(x)g(x)$ $dx$}").scale(0.57).shift(3.8*RIGHT+2.9*UP)
- text16[1].set_color(TEAL)
- self.play(ShowCreation(text16))
- self.wait(1.7)
- curve11 = self.get_graph(lambda x : sin(x)*x, x_min=0,x_max=2.3,color=TEAL)
- area6 = self.get_area(curve11,0,2.3)
- area6.set_color(TEAL)
- text17 = TextMobject(r"$f(x)\cdot g(x)$").scale(0.5).shift(0.9*RIGHT+0.7*DOWN)
- self.play(ShowCreation(curve11),ShowCreation(text17),ShowCreation(area6))
- self.wait(2)
-
- text18 = TextMobject(r"\text{$2 <f(x), g(x)>$ = ",r"\text{$2 \int_{a}^{b} f(x)g(x)$ $dx$}").scale(0.57).shift(4*RIGHT+2.3*UP)
- text18[1].set_color(DARK_BLUE)
- self.play(ShowCreation(text18))
- self.wait(2)
- curve12 = self.get_graph(lambda x : 2*sin(x)*x, x_min=0,x_max=2.3,color=DARK_BLUE)
- area7 = self.get_area(curve12,0,2.3)
- area7.set_color(DARK_BLUE)
- text19 = TextMobject(r"= $2( f(x)\cdot g(x) )$").scale(0.5).shift(2.5*RIGHT+0.97*UP)
- self.play(ShowCreation(curve12),ShowCreation(area7),ShowCreation(text19),FadeOut(text17),FadeOut(area6),FadeOut(curve11))
-
- self.wait(2.5)
- text20 = TextMobject(r"$<2f(x), g(x)>$ = $2<f(x), g(x)>$").scale(0.57).shift(0.6*DOWN+4*RIGHT)
- rect2 = Rectangle(height=0.5)
- rect2.surround(text20)
- self.play(ShowCreation(text20),ShowCreation(rect2))
- self.wait(3)
-
- self.play(FadeOut(text14),FadeOut(text15),FadeOut(text19),FadeOut(text16),FadeOut(text18),FadeOut(rect2),FadeOut(curve10),FadeOut(area5),FadeOut(curve12),FadeOut(area7),FadeOut(text20))
- curve1 = self.get_graph(lambda x : sin(x), x_min=0,x_max=2.3,color=YELLOW)
- text1 = TextMobject(r"$f(x)$").scale(0.5).shift(1.77*DOWN+0.55*RIGHT)
- self.play(ShowCreation(curve1),ShowCreation(text1))
- self.wait(1.5)
- self.play(ShowCreation(curve2),ShowCreation(text2))
- self.wait(1.7)
- text21 = TextMobject(r"\text{$<f(x), g(x)>$ = ",r"\text{$\int_{a}^{b} f(x)g(x)$ $dx$}").scale(0.57).shift(3.5*RIGHT+3*UP)
- text21[1].set_color(GREEN)
- self.play(ShowCreation(text21))
- self.wait(2)
- curve13 = self.get_graph(lambda x : sin(x)*x, x_min=0,x_max=2.3,color=GREEN)
- area8 = self.get_area(curve13,0,2.3)
- area8.set_color(GREEN)
- text22 = TextMobject(r"$f(x)\cdot g(x)$").scale(0.5).shift(0.8*RIGHT+0.7*DOWN)
- self.play(ShowCreation(curve13),ShowCreation(area8),ShowCreation(text22),FadeOut(curve1),FadeOut(text1),FadeOut(curve2),FadeOut(text2))
- self.wait(2.2)
- curve14 = self.get_graph(lambda x : sin(x)*x, x_min=0,x_max=2.3,color=RED)
- area9 = self.get_area(curve14,0,2.3)
- area9.set_color(RED)
- self.play(ShowCreation(curve14),ShowCreation(area9))
- text23 = TextMobject(r"= $\overline{f(x)\cdot g(x)}$").scale(0.5).shift(0.7*DOWN+2.1*RIGHT)
- self.play(ShowCreation(text23))
- self.wait(2)
- text24 = TextMobject(r"For all the real functions").scale(0.5).shift(2*RIGHT+2*UP)
- text25 = TextMobject(r"$<\overline{f(x), g(x)}>$ = $<f(x), g(x)>$").scale(0.5).shift(2*RIGHT+1.4*UP)
- rect3 = Rectangle(height=0.7)
- rect3.surround(text25)
- self.play(ShowCreation(text24),ShowCreation(text25),ShowCreation(rect3))
- self.wait(3)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|