diff options
author | Saarth Deshpande | 2020-07-04 02:13:27 +0530 |
---|---|---|
committer | Saarth Deshpande | 2020-07-04 02:13:27 +0530 |
commit | 05080cd0751a9ebd7acf9c94790461038aa9a069 (patch) | |
tree | 028ba24d4d470b9e9132235c861a6030ac1fa625 /FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_curvature_interpretation.py | |
parent | 8096534204aeb06ea8e4b7a25c5bf4f7f1d52ffb (diff) | |
download | FSF-mathematics-python-code-archive-05080cd0751a9ebd7acf9c94790461038aa9a069.tar.gz FSF-mathematics-python-code-archive-05080cd0751a9ebd7acf9c94790461038aa9a069.tar.bz2 FSF-mathematics-python-code-archive-05080cd0751a9ebd7acf9c94790461038aa9a069.zip |
tnb, curvature interpretation
Diffstat (limited to 'FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_curvature_interpretation.py')
-rw-r--r-- | FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_curvature_interpretation.py | 86 |
1 files changed, 77 insertions, 9 deletions
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_curvature_interpretation.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_curvature_interpretation.py index d8dd0a4..128fc17 100644 --- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_curvature_interpretation.py +++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_curvature_interpretation.py @@ -1,12 +1,55 @@ from manimlib.imports import * -class interpretation(Scene): +class interpretation(ZoomedScene): + CONFIG = { + "zoomed_display_height": 3, + "zoomed_display_width": 3, + "zoom_factor": 0.15, + "zoomed_display_center": ORIGIN + 4*LEFT + DOWN, + } def construct(self): - tgt = Vector((1, 2, 0), color = YELLOW) + + tgt = Vector((1, 2, 0), color = YELLOW).shift(0.005*RIGHT + 0.007*DOWN) + dot = Dot(tgt.get_start(),color = RED) + curve = ParametricFunction( + lambda t: np.array([ + 2*(t**2), + 4*t, + 0 + ]), t_min = -5, t_max = 5 + ).scale(0.3).move_to(ORIGIN + 4*RIGHT).rotate(6*DEGREES) + + ds = ParametricFunction( + lambda t: np.array([ + 2*(t**2), + 4*t, + 0 + ]), t_min = 0, t_max = 0.05, color = GREEN_SCREEN + ).scale(0.9).shift(3.09*LEFT).rotate(-27.5*DEGREES).move_to(ORIGIN).shift(0.07*UP + 0.05*RIGHT).set_stroke(width=20) + + dsl = TextMobject(r'$ds$', color = GREEN_SCREEN).scale(0.2).next_to(ds, RIGHT, buff = 0) + + tgtText = TextMobject(r'$r\prime (t)$').next_to(tgt, UP, buff = 0).scale(0.7) tgt2 = DashedLine((0,0,0),(1, 2, 0), color = GRAY).shift(DOWN + 2*RIGHT) + circle = Circle(radius = 0.9, color = GREEN_SCREEN).shift(0.85*RIGHT + 0.38*DOWN) + circle.set_stroke(opacity = 1) + dl = DashedLine(circle.get_center(), dot.get_center()) + dltext = TextMobject(r'$R = 2.795$').scale(0.5).next_to(circle.get_center(), DOWN, buff = 0.1) + + main = TextMobject(r'r(t) = $\left\langle t^{2}, 2t, 0 \right\rangle\quad r\prime (t) = \left\langle 2t, 2, 0 \right\rangle\quad$ \\ $r\prime\prime (t) = \left\langle 2, 0, 0 \right\rangle$').scale(0.7).shift(3*UP + 3*LEFT) + main2 = TextMobject(r'Curvature at an arbitrary point \\ say r(t = 0.5) can be given as: \\ $\kappa = \frac{1}{R} = \frac{1}{2.795} = 0.357$').scale(0.7).shift(3.5*LEFT) + main3 = TextMobject(r'The ', 'tangent', r' and ', 'normal', r' vectors \\ can be represented as:').scale(0.7).shift(3.5*LEFT) + main3.set_color_by_tex_to_color_map({ + "tangent": YELLOW, + "normal": BLUE + }) + main4 = TextMobject(r'These vectors travel along \\ a small interval ', r'$ds$').scale(0.7).shift(1.5*UP + 3*LEFT) + main4.set_color_by_tex_to_color_map({ + "$ds$": GREEN_SCREEN + }) - nm = Vector((2, -1, 0), color = BLUE) + nm = Vector((2, -1, 0), color = BLUE).shift(0.005*RIGHT + 0.007*DOWN) nmText = TextMobject(r'$r\prime\prime (t)$').next_to(nm, DOWN+RIGHT, buff = 0).scale(0.7) nm2 = DashedLine((0,0,0),(2, -1, 0), color = GRAY).shift(2*UP + RIGHT) square = Square(fill_color = WHITE, fill_opacity = 0.2).rotate(63*DEGREES).shift(0.5*UP +1.5*RIGHT).scale(1.1) @@ -14,20 +57,41 @@ class interpretation(Scene): arrow = CurvedArrow(square.get_center() + np.array([2,1,0]), square.get_center() + np.array([0.5,0,0])) arrowText = TextMobject(r'$r\prime (t)\times r\prime\prime (t)$').next_to(arrow.get_start(), DOWN+1*RIGHT, buff = 0).scale(0.7) - text1 = TextMobject(r'$\left|\frac{dT}{ds}\right| = \frac{\left|\frac{dT}{dt}\right|}{\left|\frac{ds}{dt}\right|}$').shift(UP+3*LEFT) - text2 = TextMobject(r'$\left|\frac{dT}{ds}\right| = \frac{\frac{r\prime\prime (t)}{\left| r\prime (t)\right|}\times\frac{r\prime (t)}{\left| r\prime (t)\right|}}{\left|r\prime (t)\right|}$').next_to(text1, DOWN, buff = 0.1) + text1 = TextMobject(r'$\left|\frac{dT}{ds}\right| = \frac{\left|\frac{dT}{dt}\right|}{\left|\frac{ds}{dt}\right|}$').shift(UP+3*LEFT).scale(0.7) + text2 = TextMobject(r'$\left|\frac{dT}{ds}\right| = \frac{\frac{r\prime\prime (t)}{\left| r\prime (t)\right|}\times\frac{r\prime (t)}{\left| r\prime (t)\right|}}{\left|r\prime (t)\right|}$').next_to(text1, DOWN, buff = 0.1).scale(0.7) + text3 = TextMobject(r'$= \frac{4}{(4t^{2} + 4)^{\frac{3}{2}}}$ \\ $= \frac{1}{2\sqrt{(1 + (0.5)^{2})^{3}}}$').next_to(text2, DOWN, buff = 0.1).scale(0.7) + text4 = TextMobject(r'$ = 0.357$').scale(0.7).next_to(text3, DOWN, buff = 0.2) unit = VGroup(*[tgt, tgt2, nm, nm2]) - # self.play(FadeIn(VGroup(*[tgt, tgt2, nm, nm2, nmText, tgtText, square, arrow, arrowText]))) tgt2text = TextMobject(r'$\frac{r\prime (t)}{\left| r\prime (t)\right|}$').shift(1.1*UP).scale(0.7).rotate(63*DEGREES ) nm2text = TextMobject(r'$\frac{r\prime\prime (t)}{\left| r\prime (t)\right|}$').scale(0.7).shift(0.7*RIGHT+0.8*DOWN).rotate(-25*DEGREES) unit2 = unit.copy().scale(0.5).shift(0.75*LEFT+0.25*DOWN) - self.play(FadeIn(VGroup(*[tgt, tgtText]))) + self.play(FadeIn(curve), FadeIn(main)) + self.wait(1) + self.play(ApplyMethod(curve.scale, 3), ApplyMethod(curve.shift, ORIGIN + 3.31*RIGHT)) + # self.wait(2) + self.play(FadeIn(main2), FadeIn(dot)) + self.play(FadeIn(circle), FadeIn(dl), FadeIn(dltext)) + self.wait() + self.play(ReplacementTransform(main2, main3), FadeOut(circle), FadeOut(dl), FadeOut(dltext), FadeIn(VGroup(*[tgt, tgtText]))) self.wait(1) self.play(FadeIn(VGroup(*[nm, nmText]))) self.wait(1) - self.play(FadeIn(VGroup(*[tgt2, nm2]))) + self.remove(dot) + self.setup() + #self.camera_frame.set_width(4) + self.activate_zooming(animate = True) + self.play(FadeIn(ds), FadeIn(dsl), FadeOut(main3)) + self.wait(1) + self.play(FadeIn(main4)) + self.play(ApplyMethod(tgt.shift, 0.16*UP + 0.09*RIGHT), ApplyMethod(nm.shift, 0.16*UP + 0.09*RIGHT), run_time = 5) + self.wait(1) + self.play(FadeOut(ds), FadeOut(dsl), FadeOut(main4), FadeOut(self.zoomed_display, run_time = 1), FadeOut(self.zoomed_camera.frame, run_time = 1)) + # tgt = tgt.shift(0.16*DOWN + 0.08*LEFT) + # nm = nm.shift(0.16*DOWN + 0.08*LEFT) + self.play(ApplyMethod(tgt.shift, 0.16*DOWN + 0.09*LEFT, run_time = 1), ApplyMethod(nm.shift, 0.16*DOWN + 0.09*LEFT, run_time = 1)) + self.play(FadeIn(dot), FadeIn(VGroup(*[tgt2, nm2]))) self.wait(1) self.play(FadeIn(VGroup(*[square, arrow, arrowText]))) self.wait(1) @@ -38,5 +102,9 @@ class interpretation(Scene): self.play(FadeIn(text1)) self.wait(1) self.play(FadeIn(text2)) + self.wait(1) + self.play(FadeIn(text3)) + self.wait(1) + self.play(FadeIn(text4)) self.wait(2) - self.play(FadeOut(VGroup(*[tgt2text, nm2text, text1, text2, tgt, tgtText,nm, nmText,tgt2, nm2,square, arrow, arrowText,unit2]))) + self.play(FadeOut(VGroup(*[main, curve, dot, tgt2text, nm2text, text1, text2, text3, text4, tgt, tgtText,nm, nmText,tgt2, nm2,square, arrow, arrowText,unit2]))) |