summaryrefslogtreecommitdiff
path: root/FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/Greens Theorem/GreensTheorem_file1_ftc-analogue.py
diff options
context:
space:
mode:
authorPadmapriya Mohan2020-07-20 14:33:10 +0530
committerPadmapriya Mohan2020-07-20 14:33:10 +0530
commitbcd70e78f623191176ece96184ec1fa39c6f30b1 (patch)
treeaf86d500ce2438c971fd45a61c3bc7be11a4a1da /FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/Greens Theorem/GreensTheorem_file1_ftc-analogue.py
parentd72ba1b05700096a2c42e9616e30a939e9b921a6 (diff)
downloadFSF-mathematics-python-code-archive-bcd70e78f623191176ece96184ec1fa39c6f30b1.tar.gz
FSF-mathematics-python-code-archive-bcd70e78f623191176ece96184ec1fa39c6f30b1.tar.bz2
FSF-mathematics-python-code-archive-bcd70e78f623191176ece96184ec1fa39c6f30b1.zip
files with gifs
Diffstat (limited to 'FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/Greens Theorem/GreensTheorem_file1_ftc-analogue.py')
-rw-r--r--FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/Greens Theorem/GreensTheorem_file1_ftc-analogue.py265
1 files changed, 265 insertions, 0 deletions
diff --git a/FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/Greens Theorem/GreensTheorem_file1_ftc-analogue.py b/FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/Greens Theorem/GreensTheorem_file1_ftc-analogue.py
new file mode 100644
index 0000000..222663b
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/Greens Theorem/GreensTheorem_file1_ftc-analogue.py
@@ -0,0 +1,265 @@
+from manimlib.imports import *
+
+
+def vector_field_func(coordinate):
+ x,y = coordinate[:2]
+ return np.array([
+ x,
+ y,
+ 0
+ ])
+def curl(coordinate):
+ x,y = coordinate[:2]
+ U = (x**2 + y**2)
+ return np.array([
+ -y/(x**2 + y**2),
+ x/(x**2 + y**2),
+ 0
+ ])
+
+
+
+
+
+class GreensVisual(Scene):
+
+ def construct(self):
+ axes_config = {"x_min": -6,
+ "x_max": 6,
+ "y_min": -6,
+ "y_max": 6,
+ "z_axis_config": {},
+ "z_min": -1,
+ "z_max": 1,
+ "z_normal": DOWN,
+ "light_source": 9 * DOWN + 7 * LEFT + 10 * OUT,
+ "number_line_config": {
+ "include_tip": False,
+ },
+ }
+
+ axes = Axes(**axes_config)
+
+ field = VectorField(vector_field_func).fade(0.5)
+ self.add(field)
+
+ title = TexMobject(r"\textit{According to Green's Theorem, }").shift(3*UP)
+
+ eq1 = TexMobject(r"\int_{C} \vec F . dr = \int \int_{D} \nabla \times \vec F dA").shift(3*DOWN)
+ eq5 = TexMobject(r"\int_{C} \vec F . dr = \int \int_{D} \nabla \times \vec F dA").shift(3*DOWN)
+
+ generalisation = TexMobject()
+
+ eq2 = TexMobject(r"\int_{C} \vec F . dr = \int_{C_1} \vec F . dr + \int_{C_{2}} \vec F . dr").shift(3*DOWN)
+ eq3 = TexMobject(r"\int_{C} \vec F . dr = \int_{C_{1}} \vec F . dr + \int_{C_{2}} \vec F . dr + \int_{C_{3}} \vec F . dr + \int_{C_{4}} \vec F . dr...").shift(3*DOWN)
+ eq4 = TexMobject(r"\int_{C_{r}} \vec F dr \approx \int\int_{D} \nabla \times \vec F dA").shift(3*DOWN)
+ eq = TexMobject(r"\int_{C_{r}} \textit{macroscopic curl} = \int\int_{D} \text{sum of all microscopic curls}").shift(3*UP)
+
+ text_1 = TexMobject(r"\textit{Split C into 2 parts and calculate curl of each one of the smaller regions seperately}").shift(3*UP)
+ #text_2 = TexMobject(r"\textit{}").shift(3*UP)
+ text_3 = TexMobject(r"\textit{By splitting C into n segments, the area of each region approaches the limit 0}", r"\textit{The macroscopic circulation along the curve }", r"\textit{is equivalent to the sum of microscopic circulation of all these small regions }")
+ text_3[0].move_to(3.8*UP)
+ text_3[1].set_color(YELLOW_E).next_to(text_3[0], DOWN, buff = SMALL_BUFF)
+ text_3[2].set_color(BLUE_E).next_to(text_3[1], DOWN, buff = SMALL_BUFF)
+
+
+
+ curl_rep_1 = StreamLines(
+ curl,
+ virtual_time=4,
+ min_magnitude=0,
+ max_magnitude=2,
+ dt = 0.1,
+ x_min = -0.5, x_max = 0.5, y_min = -0.5, y_max = 0.5,
+ ).set_color_by_gradient([BLUE_E, TEAL, WHITE])
+ flow_1 = AnimatedStreamLines(
+ curl_rep_1,
+ line_anim_class=ShowPassingFlashWithThinningStrokeWidth
+ )
+
+ static = VMobject()
+ for p in range(0, 8, 4):
+ curl_rep_n = [*StreamLines(
+ curl,
+ virtual_time=2,
+ min_magnitude=0,
+ max_magnitude=1,
+ dt = 0.1,
+ x_min = -0.5, x_max = 0.5, y_min = -0.5, y_max = 0.5,
+ ).scale(0.5).move_to(np.array([-2+p, 0,0]))]
+ static.add(*curl_rep_n)
+ static_1 = VMobject()
+ for p in range(-3, 4, 2):
+ curl_rep_1 = [*StreamLines(
+ curl,
+ virtual_time=2,
+ min_magnitude=0,
+ max_magnitude=1,
+ dt = 0.1,
+ x_min = -0.5, x_max = 0.5, y_min = -0.5, y_max = 0.5,
+ ).scale(0.25).move_to(np.array([p, 0.6,0]))]
+ static_1.add(*curl_rep_1)
+
+ static_2 = VMobject()
+ for p in range(-3, 4, 2):
+ curl_rep_2 = [*StreamLines(
+ curl,
+ virtual_time=2,
+ min_magnitude=0,
+ max_magnitude=1,
+ dt = 0.1,
+ x_min = -0.5, x_max = 0.5, y_min = -0.5, y_max = 0.5,
+ ).scale(0.25).move_to(np.array([p, -0.6,0]))]
+ static_2.add(*curl_rep_2)
+
+
+
+ surface_6 = ParametricSurface(
+ self.surface,
+ u_min=-3,
+ u_max=3,
+ v_min=-3,
+ v_max=3,
+ fill_color=BLACK,
+ checkerboard_colors=[BLACK, BLACK],
+ stroke_color=BLUE_E,
+ resolution = [64,64]
+ ).set_fill(opacity=0.2).scale(1.5)
+
+ boundary = ParametricSurface(
+ self.surface,
+ u_min=-3,
+ u_max=3,
+ v_min=-3,
+ v_max=3,
+ fill_color=BLACK,
+ checkerboard_colors=[BLACK, BLACK],
+ stroke_color=YELLOW_E,
+ resolution = [2,1]
+ ).set_fill(opacity=0).scale(1.75)
+
+
+
+
+ g1 = VGroup(surface_1, c)
+ g2 = VGroup( c1, c2, text_1)
+ g3 = VGroup(c1a, c2a, c3a, c4a)
+
+ tr = Ellipse(width = 9, height = 3)
+ line = Line(tr.get_center()+1.5*UP, tr.get_center()+1.5*DOWN)
+ b = VMobject(stroke_color = "#F4EDED")
+ b.set_points_smoothly([tr.get_center()+1.5*UP, np.array([-2.25, 1.26, 0]), tr.get_center()+4.5*LEFT, np.array([-2.25, -1.26, 0]), tr.get_center()+1.5*DOWN])
+
+
+ self.add(title)
+ self.play(ShowCreation(g1), ShowCreation(eq1))
+ self.wait(3)
+ self.remove(flow_1)
+ self.play(ShowCreation(surface_2), ReplacementTransform(eq1, eq2))
+ self.remove(g1)
+ self.wait()
+ self.play(ReplacementTransform(surface_2, surface_3), ReplacementTransform(eq2, eq3))
+ self.wait()
+ self.wait()
+ self.play(FadeOut(surface_3), ShowCreation(surface_4), ReplacementTransform(eq3, eq4), ReplacementTransform(title, eq))
+ self.play(FadeOut(surface_4), ShowCreation(surface_5))
+ self.play(FadeOut(surface_5), ShowCreation(surface_6))
+ self.wait()
+ #self.add(tr, line)
+ self.wait()
+ grd = ScreenGrid()
+
+ g = ParametricFunction(func, t_min = 0, t_max = 2*PI).scale(1.5)
+ self.add(grd, g)
+ self.wait()
+
+
+def circ(coordinate):
+ x,y = coordinate[:2]
+ for x in range(0, -5) and y in range(-1,1):
+ cr = Ellipse()
+ return cr
+
+def func(t):
+ return np.array([
+ np.sin(t),
+ np.cos(t),
+ 0])
+
+def surf(t,u):
+ return np.array([
+ u*np.sin(t),
+ np.cos(t),
+ 0])
+
+class Analogy(GraphScene):
+ CONFIG = {
+ "x_min": -1,
+ "x_max": 4,
+ "y_min": 0,
+ "y_max": 2,
+ "y_tick_frequency": 2.5,
+ "n_rect_iterations": 6,
+ "default_right_x": 3,
+ }
+
+ def construct(self):
+
+
+ ftc = TexMobject(r"\int_a^b f'(x) \ dx", r" = f(b) - f(a)").shift(3*UP).set_color("#F9DB6D").scale(0.7)
+ greens = TexMobject(r"\int \int_{R} curl \left(\vec F \right) \ dxdy", r" = \int_{C} \vec F \ dr").shift(3*UP).set_color("#F9DB6D").scale(0.7)
+ ftc[0].set_color("#36827F")
+ greens[1].set_color("#36827F")
+
+
+ two_to_one = TexMobject(r"\textit{2D region} \to", r"\textit{1D curve}").shift(3.6*DOWN).scale(0.7).set_color("#F9DB6D")
+ one_to_zero = TexMobject(r"\textit{1D curve}", r" \to \textit{0D points}").shift(3.6*DOWN).set_color("#F9DB6D").scale(0.7)
+ two_to_one[1].set_color("#36827F")
+ one_to_zero[0].set_color("#36827F")
+ greens_title = TexMobject(r"\textit{Green's Theorem}").scale(0.8).next_to(two_to_one, UP, buff = SMALL_BUFF).set_color("#F4EDED")
+ ftc_title = TexMobject(r"\textit{Fundamental Theorem of Calculus}").scale(0.8).next_to(two_to_one, UP, buff = SMALL_BUFF).set_color("#F4EDED")
+
+ surf= VMobject(fill_color = "#ED6A5A", stroke_color = "#ED6A5A", fill_opacity = 0.6)
+ surf.set_points_smoothly([np.array([-2, 1.8,0]),np.array([-1.6, 0.5,0]),np.array([-3.2, -1.2,0]),np.array([2.6, -1.5,0]),np.array([1, 0,0]),np.array([3.5,2.3, 0]), np.array([-2,1.8, 0])])
+ dot = Dot(np.array([-2,1.8, 0])).set_color("#F4EDED")
+ boundary = VMobject(stroke_color = "#F4EDED")
+ boundary.set_points_smoothly([np.array([-2, 1.8,0]),np.array([-1.6, 0.5,0]),np.array([-3.2, -1.2,0]),np.array([2.6, -1.5,0]),np.array([1, 0,0]),np.array([3.5,2.3, 0]), np.array([-2,1.8, 0])])
+ c = TexMobject(r"C").next_to(surf,RIGHT+UP).set_color("#F4EDED")
+ r = TexMobject(r"R").move_to(np.array([-0.2, 0.6, 0])).set_color("#F4EDED")
+
+ self.play(ShowCreation(surf), ShowCreation(r))
+ self.wait(2)
+ self.play(ShowCreation(boundary), MoveAlongPath(dot, boundary), Write(c), Write(greens),Write(greens_title), run_time= 1.5)
+ self.wait(2)
+ self.play(ReplacementTransform(surf, boundary), FadeOut(r), Write(two_to_one), FadeOut(dot))
+ self.wait(2)
+
+ self.setup_axes()
+
+ grapher = self.get_graph(self.funk)
+ grapher.set_color("#E94F37")
+ l1 = self.get_vertical_line_to_graph(1, grapher, color = "#F4EDED")
+ l2 =self.get_vertical_line_to_graph(3, grapher, color = "#F4EDED")
+ label_coord_1 = self.input_to_graph_point(1,grapher)
+ label_coord_2 = self.input_to_graph_point(3,grapher)
+
+
+ a = TexMobject(r"a").next_to(label_coord_1,RIGHT+UP).set_color("#F4EDED")
+ b = TexMobject(r"b").next_to(label_coord_2,RIGHT+UP).set_color("#F4EDED")
+
+
+
+
+
+ point_a = Dot(label_coord_1).set_color("#827081")
+ point_b = Dot(label_coord_2).set_color("#827081")
+
+
+ self.play(ReplacementTransform(boundary, grapher), FadeOut(c), FadeIn(a), FadeIn(b), FadeIn(point_a), FadeIn(point_b), ReplacementTransform(greens, ftc), ReplacementTransform(greens_title, ftc_title))
+ self.wait(2)
+ self.play(Uncreate(grapher), ReplacementTransform(two_to_one, one_to_zero))
+ self.wait(2)
+
+
+ def funk(self,x):
+ return 0.2*(x-2)**2 +1 \ No newline at end of file