diff options
author | Vaishnavi | 2020-06-26 23:32:46 +0530 |
---|---|---|
committer | GitHub | 2020-06-26 23:32:46 +0530 |
commit | 66e1207623862b92d68ccff098705194e05516de (patch) | |
tree | a36d1255d68230fa3bef39fb8ccc47e81e61d99b /FSF-2020/calculus-of-several-variables/approximations-and-optimizations | |
parent | ca9d449b68c2393a58dcb090f664739a8282919f (diff) | |
download | FSF-mathematics-python-code-archive-66e1207623862b92d68ccff098705194e05516de.tar.gz FSF-mathematics-python-code-archive-66e1207623862b92d68ccff098705194e05516de.tar.bz2 FSF-mathematics-python-code-archive-66e1207623862b92d68ccff098705194e05516de.zip |
Update and rename file3_Nondegenerate_Hessian_Matrix.py to file2_Nondegenerate_Hessian_Matrix.py
Diffstat (limited to 'FSF-2020/calculus-of-several-variables/approximations-and-optimizations')
2 files changed, 158 insertions, 145 deletions
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py new file mode 100644 index 0000000..32c1559 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py @@ -0,0 +1,158 @@ +from manimlib.imports import* +import math as m + +class Minima(ThreeDScene): + def construct(self): + + heading = TextMobject("Nondegenerate Hessian Matrix",color = BLUE) + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis + + h_text = TextMobject("Case 1: $\\frac{\\partial^2 f}{\\partial x^2}>0$ and $\\frac{\\partial^2 f}{\\partial y^2}>0$").scale(1) + + #---- determiniant of Hessian Matrix + hessian_surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -0.5*m.exp(-u**2-v**2) + ]),u_min = -PI, u_max = PI, v_min = -PI, v_max =PI).set_color(TEAL).shift([0,0,0]).scale(1).fade(0.2) + + det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7) + + #---- function f(x,y) + f_surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2+v**2 + ]),u_min = -1.3, u_max = 1.3, v_min = -1.3, v_max = 1.3).set_color(TEAL).shift([0,0,-0.5]) + + f_text= TextMobject("surface of the function").to_corner(UL).scale(0.8) + + d = Dot(color = "#800000").shift([0,0,-0.52]) #---- critical point + + self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES) + self.add_fixed_in_frame_mobjects(heading) + self.wait(1) + self.play(FadeOut(heading)) + self.wait(1) + self.add_fixed_in_frame_mobjects(h_text) + self.wait(1) + self.play(FadeOut(h_text)) + self.wait(1) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.play(Write(hessian_surface)) + self.wait(1) + self.add_fixed_in_frame_mobjects(det_text) + self.move_camera(phi = 90*DEGREES, theta= 60*DEGREES) + self.play(Write(d)) + self.wait(1) + self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,f_surface)) + self.wait(1) + self.add_fixed_in_frame_mobjects(f_text) + self.wait(1) + self.play(FadeOut(f_text),FadeOut(f_surface),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(d)) + +class Maxima(ThreeDScene): + def construct(self): + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis + + h_text = TextMobject("Case 2: $\\frac{\\partial^2 f}{\\partial x^2}<0$ and $\\frac{\\partial^2 f}{\\partial y^2}<0$").scale(1) + + #---- determiniant of Hessian Matrix + hessian_surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + 0.5*m.exp(-u**2-v**2) + ]),u_min = -PI, u_max = PI, v_min = -PI, v_max =PI).set_color(TEAL).shift([0,0,0]).scale(1).fade(0.2) + + det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7) + + #---- function g(x,y) + g_surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-v**2 + ]),u_min = -1.3, u_max = 1.3, v_min = -1.3, v_max = 1.3).set_color(TEAL).shift([0,0,0.5]) + + g_text= TextMobject("surface of the function").to_corner(UL).scale(0.8) + + d = Dot(color = "#800000").shift([0,0,0.5]) #---- critical point + + self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES) + self.add_fixed_in_frame_mobjects(h_text) + self.wait(1) + self.play(FadeOut(h_text)) + self.wait(1) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.play(Write(hessian_surface)) + self.wait(1) + self.add_fixed_in_frame_mobjects(det_text) + self.play(Write(d)) + self.wait(1) + self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,g_surface)) + self.wait(1) + self.add_fixed_in_frame_mobjects(g_text) + self.wait(1) + self.play(FadeOut(g_text),FadeOut(g_surface),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(d)) + +class SaddlePoint(ThreeDScene): + def construct(self): + + axes = ThreeDAxes() + label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis + label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis + + h_text = TextMobject("Case 3: $\\frac{\\partial^2 f}{\\partial x^2}$ and $\\frac{\\partial^2 f}{\\partial y^2}$ have opposite signs").scale(1) + + #---- determiniant of Hessian Matrix + hessian_surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + m.exp(0.5*u**2-0.5*v**2) + ]),u_min = -1.2, u_max = 1.2, v_min = -2.5, v_max = 2.5).set_color(TEAL).shift([0,0,-1]).scale(1).fade(0.2) + + det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7) + + #---- function p(x,y) + p_surface = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2-v**2 + ]),u_min = -1, u_max = 1, v_min = -1, v_max =1).set_color(TEAL).shift([0,0,0]).scale(2) + + p_text= TextMobject("surface of the function").to_corner(UL).scale(0.8) + + d = Dot(color = "#800000").shift([0,0,0]) #---- critical point + + self.set_camera_orientation(phi = 80*DEGREES, theta = 60*DEGREES) + self.add_fixed_in_frame_mobjects(h_text) + self.wait(1) + self.play(FadeOut(h_text)) + self.wait(1) + self.add(axes) + self.add(label_x) + self.add(label_y) + self.wait(1) + self.play(Write(hessian_surface)) + self.play(Write(d)) + self.wait(1) + self.add_fixed_in_frame_mobjects(det_text) + self.wait(2) + self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,p_surface)) + self.add_fixed_in_frame_mobjects(p_text) + self.wait(2) diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py deleted file mode 100644 index 3056842..0000000 --- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py +++ /dev/null @@ -1,145 +0,0 @@ -from manimlib.imports import* - -class firstScene(Scene): - def construct(self): - - e_text = TextMobject("Case 3: One positive and one negative eigenvalue", color = YELLOW).scale(1).shift(3*UP+1*LEFT) - f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$").scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) - c_text = TextMobject("Critical Point: $(1,0)$").scale(0.8).next_to(f_text).shift(DOWN+4*LEFT) - d_text = TextMobject("\\begin{equation*} D_2(1,0)= \\begin{vmatrix} 2 \\space & 0\\space \\\\ 0 & -4 \\end{vmatrix} \\end{equation*}",color = GREEN).scale(0.9) - - t_text = TextMobject("$D_2 = -8<0$ (Saddle Point)", color = BLUE).scale(0.9).shift(2*DOWN) - - self.play(ShowCreation(e_text)) - self.wait(1) - self.play(ShowCreation(f_text)) - self.wait(1) - self.play(ShowCreation(c_text)) - self.wait(1) - self.play(ShowCreation(d_text)) - self.wait(1) - self.play(ShowCreation(t_text)) - self.wait(2) - -class SaddlePoint(ThreeDScene): - def construct(self): - axes = ThreeDAxes() - f = ParametricSurface( - lambda u, v: np.array([ - u, - v, - u**2-2*v**2-2*u - ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[RED_C,PURPLE_D,YELLOW_E], - resolution=(20, 20)).scale(1) - - self.set_camera_orientation(phi=35 * DEGREES,theta=80*DEGREES) - self.begin_ambient_camera_rotation(rate=0.4) - - f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$",color = GREEN).shift(2*DOWN+2*RIGHT).scale(0.8) - self.add_fixed_in_frame_mobjects(f_text) - self.add(axes) - self.play(Write(f)) - self.wait(3) - - -class secondScene(Scene): - def construct(self): - - h_text = TextMobject("NonDegenerate Hessian Matrix", color = GREEN).scale(1).shift(UP) - e_text = TextMobject("Case 1: Two positive eigenvalues", color = PINK).scale(1).shift(3*UP+2*LEFT) - f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = TEAL).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) - c_text = TextMobject("Critical Point: $(0,0)$",color = TEAL).scale(0.8).next_to(f_text).shift(DOWN+4.5*LEFT) - d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 4 \\space & -2\\space \\\\ -2 & 6 \\end{vmatrix} \\end{equation*}",color = PINK).scale(0.9) - - t_text = TextMobject("$D_2 = 20>0$ (Relative Maxima or Relative Minima)", color = YELLOW).scale(0.9).shift(1*DOWN) - tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =4 >0$ (Relative Minima)", color = YELLOW).scale(0.9).shift(2*DOWN) - - - self.play(ShowCreation(h_text)) - self.wait(1) - self.play(FadeOut(h_text)) - self.wait(1) - self.play(ShowCreation(e_text)) - self.wait(1) - self.play(ShowCreation(f_text)) - self.wait(1) - self.play(ShowCreation(c_text)) - self.wait(1) - self.play(ShowCreation(d_text)) - self.wait(1) - self.play(ShowCreation(t_text)) - self.wait(1) - self.play(ShowCreation(tm_text)) - self.wait(2) - self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text)) - -class Minima(ThreeDScene): - def construct(self): - axes = ThreeDAxes() - f = ParametricSurface( - lambda u, v: np.array([ - u, - v, - 2*u**2+3*v**2-2*v*u - ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,YELLOW_D,GREEN_E], - resolution=(20, 20)).scale(1) - - self.set_camera_orientation(phi=10 * DEGREES,theta=90*DEGREES) - self.begin_ambient_camera_rotation(rate=0.2) - - f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = PURPLE).shift(2*DOWN+3*RIGHT).scale(0.8) - self.add_fixed_in_frame_mobjects(f_text) - self.add(axes) - self.play(Write(f)) - self.wait(2) - - -class thirdScene(Scene): - def construct(self): - - - e_text = TextMobject("Case 2: Two negative eigenvalues", color = RED).scale(1).shift(3*UP+2*LEFT) - f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = BLUE).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) - c_text = TextMobject("Critical Point: $(0,0)$",color = BLUE).scale(0.8).next_to(f_text).shift(DOWN+3.8*LEFT) - d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} -2 \\space & 0\\space \\\\ 0 & -8 \\end{vmatrix} \\end{equation*}",color = TEAL).scale(0.9) - - t_text = TextMobject("$D_2 = 16>0$ (Relative Maxima or Relative Minima)" ).scale(0.9).shift(1*DOWN) - tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =-2 <0$ (Relative Maxima)").scale(0.9).shift(2*DOWN) - - - self.play(ShowCreation(e_text)) - self.wait(1) - self.play(ShowCreation(f_text)) - self.wait(1) - self.play(ShowCreation(c_text)) - self.wait(1) - self.play(ShowCreation(d_text)) - self.wait(1) - self.play(ShowCreation(t_text)) - self.wait(1) - self.play(ShowCreation(tm_text)) - self.wait(2) - self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text)) - - -class Maxima(ThreeDScene): - def construct(self): - axes = ThreeDAxes() - f = ParametricSurface( - lambda u, v: np.array([ - u, - v, - -u**2-4*v**2 - ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,PURPLE_D,TEAL_E], - resolution=(20, 20)).scale(1) - - self.set_camera_orientation(phi=75 * DEGREES) - self.begin_ambient_camera_rotation(rate=0.4) - - f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = YELLOW).shift(2*DOWN+3*RIGHT).scale(0.8) - self.add_fixed_in_frame_mobjects(f_text) - self.add(axes) - self.play(Write(f)) - self.wait(1) - self.move_camera(phi=30*DEGREES,theta=45*DEGREES,run_time=5) - self.wait(2) |