diff options
author | Vaishnavi | 2020-06-24 03:48:41 +0530 |
---|---|---|
committer | GitHub | 2020-06-24 03:48:41 +0530 |
commit | 355abf1850e7884e91f6bcf4fc35272a704b45b7 (patch) | |
tree | 5002bdcb6c06738dc42ee1d8a5c1f40c2cce96f1 /FSF-2020/approximations-and-optimizations | |
parent | 39e28347b3584d3077cefa2b303d6fa6ac802feb (diff) | |
download | FSF-mathematics-python-code-archive-355abf1850e7884e91f6bcf4fc35272a704b45b7.tar.gz FSF-mathematics-python-code-archive-355abf1850e7884e91f6bcf4fc35272a704b45b7.tar.bz2 FSF-mathematics-python-code-archive-355abf1850e7884e91f6bcf4fc35272a704b45b7.zip |
Create file3_Nondegenerate_Hessian_Matrix.py
Diffstat (limited to 'FSF-2020/approximations-and-optimizations')
-rw-r--r-- | FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py | 145 |
1 files changed, 145 insertions, 0 deletions
diff --git a/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py new file mode 100644 index 0000000..3056842 --- /dev/null +++ b/FSF-2020/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py @@ -0,0 +1,145 @@ +from manimlib.imports import* + +class firstScene(Scene): + def construct(self): + + e_text = TextMobject("Case 3: One positive and one negative eigenvalue", color = YELLOW).scale(1).shift(3*UP+1*LEFT) + f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$").scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) + c_text = TextMobject("Critical Point: $(1,0)$").scale(0.8).next_to(f_text).shift(DOWN+4*LEFT) + d_text = TextMobject("\\begin{equation*} D_2(1,0)= \\begin{vmatrix} 2 \\space & 0\\space \\\\ 0 & -4 \\end{vmatrix} \\end{equation*}",color = GREEN).scale(0.9) + + t_text = TextMobject("$D_2 = -8<0$ (Saddle Point)", color = BLUE).scale(0.9).shift(2*DOWN) + + self.play(ShowCreation(e_text)) + self.wait(1) + self.play(ShowCreation(f_text)) + self.wait(1) + self.play(ShowCreation(c_text)) + self.wait(1) + self.play(ShowCreation(d_text)) + self.wait(1) + self.play(ShowCreation(t_text)) + self.wait(2) + +class SaddlePoint(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + u**2-2*v**2-2*u + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[RED_C,PURPLE_D,YELLOW_E], + resolution=(20, 20)).scale(1) + + self.set_camera_orientation(phi=35 * DEGREES,theta=80*DEGREES) + self.begin_ambient_camera_rotation(rate=0.4) + + f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$",color = GREEN).shift(2*DOWN+2*RIGHT).scale(0.8) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.play(Write(f)) + self.wait(3) + + +class secondScene(Scene): + def construct(self): + + h_text = TextMobject("NonDegenerate Hessian Matrix", color = GREEN).scale(1).shift(UP) + e_text = TextMobject("Case 1: Two positive eigenvalues", color = PINK).scale(1).shift(3*UP+2*LEFT) + f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = TEAL).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) + c_text = TextMobject("Critical Point: $(0,0)$",color = TEAL).scale(0.8).next_to(f_text).shift(DOWN+4.5*LEFT) + d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 4 \\space & -2\\space \\\\ -2 & 6 \\end{vmatrix} \\end{equation*}",color = PINK).scale(0.9) + + t_text = TextMobject("$D_2 = 20>0$ (Relative Maxima or Relative Minima)", color = YELLOW).scale(0.9).shift(1*DOWN) + tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =4 >0$ (Relative Minima)", color = YELLOW).scale(0.9).shift(2*DOWN) + + + self.play(ShowCreation(h_text)) + self.wait(1) + self.play(FadeOut(h_text)) + self.wait(1) + self.play(ShowCreation(e_text)) + self.wait(1) + self.play(ShowCreation(f_text)) + self.wait(1) + self.play(ShowCreation(c_text)) + self.wait(1) + self.play(ShowCreation(d_text)) + self.wait(1) + self.play(ShowCreation(t_text)) + self.wait(1) + self.play(ShowCreation(tm_text)) + self.wait(2) + self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text)) + +class Minima(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + 2*u**2+3*v**2-2*v*u + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,YELLOW_D,GREEN_E], + resolution=(20, 20)).scale(1) + + self.set_camera_orientation(phi=10 * DEGREES,theta=90*DEGREES) + self.begin_ambient_camera_rotation(rate=0.2) + + f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = PURPLE).shift(2*DOWN+3*RIGHT).scale(0.8) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.play(Write(f)) + self.wait(2) + + +class thirdScene(Scene): + def construct(self): + + + e_text = TextMobject("Case 2: Two negative eigenvalues", color = RED).scale(1).shift(3*UP+2*LEFT) + f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = BLUE).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN) + c_text = TextMobject("Critical Point: $(0,0)$",color = BLUE).scale(0.8).next_to(f_text).shift(DOWN+3.8*LEFT) + d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} -2 \\space & 0\\space \\\\ 0 & -8 \\end{vmatrix} \\end{equation*}",color = TEAL).scale(0.9) + + t_text = TextMobject("$D_2 = 16>0$ (Relative Maxima or Relative Minima)" ).scale(0.9).shift(1*DOWN) + tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =-2 <0$ (Relative Maxima)").scale(0.9).shift(2*DOWN) + + + self.play(ShowCreation(e_text)) + self.wait(1) + self.play(ShowCreation(f_text)) + self.wait(1) + self.play(ShowCreation(c_text)) + self.wait(1) + self.play(ShowCreation(d_text)) + self.wait(1) + self.play(ShowCreation(t_text)) + self.wait(1) + self.play(ShowCreation(tm_text)) + self.wait(2) + self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text)) + + +class Maxima(ThreeDScene): + def construct(self): + axes = ThreeDAxes() + f = ParametricSurface( + lambda u, v: np.array([ + u, + v, + -u**2-4*v**2 + ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,PURPLE_D,TEAL_E], + resolution=(20, 20)).scale(1) + + self.set_camera_orientation(phi=75 * DEGREES) + self.begin_ambient_camera_rotation(rate=0.4) + + f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = YELLOW).shift(2*DOWN+3*RIGHT).scale(0.8) + self.add_fixed_in_frame_mobjects(f_text) + self.add(axes) + self.play(Write(f)) + self.wait(1) + self.move_camera(phi=30*DEGREES,theta=45*DEGREES,run_time=5) + self.wait(2) |