diff options
Rename FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py to FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
Diffstat (limited to 'FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py')
-rw-r--r-- | FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py | 77 |
1 files changed, 0 insertions, 77 deletions
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py deleted file mode 100644 index e8cb08d..0000000 --- a/FSF-2020/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py +++ /dev/null @@ -1,77 +0,0 @@ -from manimlib.imports import* -import math as m - -#---- case 1: parial derivatives exist at critical point of the function -class firstScene(ThreeDScene): - def construct(self): - - axes = ThreeDAxes() - label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis - label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis - - #---- f(x,y) = e^(-10x^2-10y^2) - surface = ParametricSurface( - lambda u, v: np.array([ - u, - v, - m.exp(-10*u**2-10*v**2) - ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B]).fade(0.6).scale(3.5).shift([0,0,1.5]) - - l1 = Line([0,0,3.75],[0,0,0],color = '#800000') - - d = Dot([0,0,3.75],color = '#800000') #---- critical point - - d_text = TextMobject("$\\frac{\\partial f}{\\partial x}=\\frac{\\partial f}{\\partial y} = 0$").scale(0.8).to_corner(UL) - - f_text = TextMobject("Critical Point ",color = YELLOW).shift(3.4*UP).scale(0.5) - - self.set_camera_orientation(phi = 45*DEGREES, theta = 40*DEGREES) - self.add(axes) - self.add(label_x) - self.add(label_y) - self.add_fixed_in_frame_mobjects(d_text) - self.begin_ambient_camera_rotation(rate = 0.2) - self.play(Write(surface)) - self.wait(1) - self.play(Write(l1)) - self.play(Write(d)) - self.wait(1) - self.add_fixed_in_frame_mobjects(f_text) - self.wait(3) - self.play(FadeOut(f_text),FadeOut(surface),FadeOut(axes),FadeOut(d_text),FadeOut(d),FadeOut(l1),FadeOut(label_x),FadeOut(label_y)) - - -#---- case 2: parial derivatives do not exist at critical point of the function -class secondScene(ThreeDScene): - def construct(self): - axes = ThreeDAxes() - label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis - label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis - - #---- g(x,y)= |x|+|y| - surface = ParametricSurface( - lambda u, v: np.array([ - u, - v, - abs(u)+abs(v) - ]),u_min = -1.5, u_max = 1.5, v_min = -1.5, v_max = 1.5, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B]) - - d2 = Dot([0,0,0],color = '#800000') #---- critical point - - d2_text = TextMobject("$\\frac{\\partial f}{\\partial x}$ and/or $\\frac{\\partial f}{\\partial y}$ does not exist").scale(0.7).to_corner(UL) - - g_text = TextMobject("Critical Point",color = YELLOW).shift(1.2*RIGHT).scale(0.6) - - self.set_camera_orientation(phi = 60*DEGREES, theta = 40*DEGREES) - self.add(axes) - self.add(label_x) - self.add(label_y) - self.add_fixed_in_frame_mobjects(d2_text) - self.begin_ambient_camera_rotation(rate = 0.2) - self.wait(1) - self.play(Write(surface2)) - self.wait(1) - self.play(Write(d2)) - self.wait(1) - self.add_fixed_in_frame_mobjects(g_text) - self.wait(2) |