diff options
author | nishanpoojary | 2020-07-25 11:05:19 +0530 |
---|---|---|
committer | GitHub | 2020-07-25 11:05:19 +0530 |
commit | c4b083a8a4b5665a2df7683cdd2d7b981a7abc53 (patch) | |
tree | 3aef79338b39690b0e8ad6b46e7ec9b71a9f2256 | |
parent | 0e1744bab2d394a096b72133c9aa9dd28b3831d3 (diff) | |
download | FSF-mathematics-python-code-archive-c4b083a8a4b5665a2df7683cdd2d7b981a7abc53.tar.gz FSF-mathematics-python-code-archive-c4b083a8a4b5665a2df7683cdd2d7b981a7abc53.tar.bz2 FSF-mathematics-python-code-archive-c4b083a8a4b5665a2df7683cdd2d7b981a7abc53.zip |
Add files via upload
-rw-r--r-- | FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py new file mode 100644 index 0000000..e413e02 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py @@ -0,0 +1,148 @@ +from manimlib.imports import *
+
+class MultivariableFunc(Scene):
+ def construct(self):
+
+ topic = TextMobject("Multivariable Functions")
+ topic.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ topic.scale(1.5)
+
+ self.play(Write(topic))
+ self.wait()
+ self.play(FadeOut(topic))
+
+
+ scalar_function = TextMobject("Scalar Valued Function")
+ scalar_function.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ scalar_function.scale(1.5)
+ scalar_function.move_to(2.5*UP)
+
+ rectangle = Rectangle(height = 2, width = 4)
+ rectangle.set_color(PURPLE)
+
+ eqn1 = TextMobject(r"f(x,y) = $x^2y$")
+ eqn1.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE)
+
+
+
+ number1 = TextMobject("(2,1)")
+ number1.move_to(2.5*UP+ 4*LEFT)
+ number1.scale(1.2)
+ number1.set_color(ORANGE)
+
+ output1 = TextMobject("4")
+ output1.scale(1.5)
+ output1.set_color(BLUE_C)
+ output1.move_to(3*RIGHT)
+
+ eqn1_1 = TextMobject(r"f(2,1) = $2^2(1)$")
+ eqn1_1.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE)
+
+
+ self.play(Write(eqn1),ShowCreation(rectangle))
+ self.wait()
+ self.play(ApplyMethod(number1.move_to, 3*LEFT))
+ self.play(FadeOut(number1))
+ self.play(Transform(eqn1, eqn1_1))
+ self.wait()
+ self.play(ApplyMethod(output1.move_to, 2.5*DOWN+4*RIGHT))
+ self.wait()
+ self.play(Write(scalar_function))
+ self.play(FadeOut(output1), FadeOut(scalar_function), FadeOut(eqn1))
+
+
+ vector_function = TextMobject("Vector Valued Function")
+ vector_function.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ vector_function.scale(1.5)
+ vector_function.move_to(2.5*UP)
+
+
+ eqn2 = TextMobject(r"f(x,y,z) = $ \begin{bmatrix} x^2y \\ 2yz \end{bmatrix}$")
+ eqn2.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ number2 = TextMobject("(2,1,3)")
+ number2.move_to(2.5*UP+ 4*LEFT)
+ number2.scale(1.2)
+ number2.set_color(ORANGE)
+
+ output2 = TextMobject(r"$ \begin{bmatrix} 4 \\ 6 \end{bmatrix}$")
+ output2.set_color(BLUE_C)
+ output2.move_to(3*RIGHT)
+
+
+
+ self.play(Write(eqn2))
+
+ self.wait()
+ self.play(ApplyMethod(number2.move_to, 3*LEFT))
+ self.play(FadeOut(number2))
+
+ self.play(ApplyMethod(output2.move_to, 2.5*DOWN+4*RIGHT))
+ self.wait()
+ self.play(Write(vector_function))
+ self.play(FadeOut(output2),FadeOut(eqn2), FadeOut(vector_function), FadeOut(rectangle))
+ self.wait()
+
+
+
+class VectorValuedFunc(Scene):
+ def construct(self):
+ numberplane = NumberPlane()
+
+ rectangle = Rectangle(height = 1, width = 2, color = PURPLE).move_to(2.5*UP+5*RIGHT)
+
+ eqn = TextMobject(r"f(x,y) = $ \begin{bmatrix} xy \\ \frac{y}{x} \end{bmatrix}$").scale(0.6).move_to(2.5*UP+5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ dot1 = Dot().set_color(PINK).move_to(np.array([2,2,0]))
+
+ number1 = TextMobject("(2,2)").scale(0.6).next_to(dot1, RIGHT).set_color(PINK)
+
+ output1 = TextMobject(r"$ \begin{bmatrix} 4 \\ 1 \end{bmatrix}$").scale(0.6).set_color(YELLOW_C).move_to(2.5*UP+6.5*RIGHT)
+
+ vector1 = Arrow(np.array([2,2,0]), np.array([4,1,0]), color = RED_C, buff = 0.01, tip_length = 0.25)
+
+ dot2 = Dot().set_color(PINK).move_to(np.array([-1,2,0]))
+
+ number2 = TextMobject("(-1,2)").scale(0.6).next_to(dot2, RIGHT).set_color(PINK)
+
+ output2 = TextMobject(r"$ \begin{bmatrix} -2 \\ -2 \end{bmatrix}$").scale(0.6).set_color(YELLOW_C).move_to(2.5*UP+6.5*RIGHT)
+
+ vector2 = Arrow(np.array([-1,2,0]), np.array([-2,-2,0]), color = RED_C, buff = 0.01, tip_length = 0.25)
+
+
+ vector_valued_function = TextMobject("Vector Valued Function").move_to(2.5*UP+3*LEFT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+
+ self.play(ShowCreation(numberplane))
+ self.wait()
+ self.play(ShowCreation(rectangle), ShowCreation(eqn))
+ self.wait()
+ self.play(ShowCreation(dot1), ShowCreation(number1))
+ self.wait(0.5)
+ self.play(ApplyMethod(number1.move_to, 2.5*UP+ 3.5*RIGHT))
+ self.wait(0.5)
+ self.play(FadeOut(number1))
+ self.wait(0.5)
+ self.play(ShowCreation(output1))
+ self.wait(0.5)
+ self.play(ShowCreation(vector1))
+ self.wait(0.5)
+ self.play(ApplyMethod(output1.move_to, 1*UP+ 4.5*RIGHT))
+ self.wait()
+
+
+ self.play(ShowCreation(dot2), ShowCreation(number2))
+ self.wait(0.5)
+ self.play(ApplyMethod(number2.move_to, 2.5*UP+ 3.5*RIGHT))
+ self.wait(0.5)
+ self.play(FadeOut(number2))
+ self.wait(0.5)
+ self.play(ShowCreation(output2))
+ self.wait(0.5)
+ self.play(ShowCreation(vector2))
+ self.wait(0.5)
+ self.play(ApplyMethod(output2.move_to, 2*DOWN+ 2.5*LEFT))
+ self.wait()
+ self.play(Write(vector_valued_function))
+ self.wait(2)
+
|