diff options
author | RemyaDebasis | 2018-07-23 20:01:22 +0530 |
---|---|---|
committer | RemyaDebasis | 2018-07-23 20:01:22 +0530 |
commit | 69460c03b8b53068d60fd08d3180efc91e627603 (patch) | |
tree | 1689256f9ca4b9ce8076d3da8d5dac1b76963859 /code/fsolve/SLEs.sce | |
parent | f2539f26af7794da4ea4ccd8ae5ec2c753e94212 (diff) | |
download | FOT_Examples-69460c03b8b53068d60fd08d3180efc91e627603.tar.gz FOT_Examples-69460c03b8b53068d60fd08d3180efc91e627603.tar.bz2 FOT_Examples-69460c03b8b53068d60fd08d3180efc91e627603.zip |
added code files
Diffstat (limited to 'code/fsolve/SLEs.sce')
-rw-r--r-- | code/fsolve/SLEs.sce | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/code/fsolve/SLEs.sce b/code/fsolve/SLEs.sce new file mode 100644 index 0000000..3daa1ee --- /dev/null +++ b/code/fsolve/SLEs.sce @@ -0,0 +1,50 @@ +//This problem solves sustem of nonlinear equations using fsolve +//Reference: A. Golbabai, M. Javidi,Newton-like iterative methods for solving system of non-linear equations,Applied Mathematics and Computation,Volume 192, Issue 2,2007,Pages 546-551,ISSN 0096-3003,https://doi.org/10.1016/j.amc.2007.03.035.(http://www.sciencedirect.com/science/article/pii/S0096300307003578) +//====================================================================== +// Copyright (C) 2018 - IIT Bombay - FOSSEE +// This file must be used under the terms of the CeCILL. +// This source file is licensed as described in the file COPYING, which +// you should have received as part of this distribution. The terms +// are also available at +// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt +// Author:Debasis Maharana +// Organization: FOSSEE, IIT Bombay +// Email: toolbox@scilab.in +//====================================================================== +clc +//Function representing system of nonlinear equaltions +function f = SLEs(p) + + x = p(1);y = p(2); + f(1) = (x+10)/x^4 + x^2 + 3*x*y + y^2-16; + f(2) = 1/(x+y)^7 + x*y - 1 - 1/2^7; + +endfunction + +//Tolarence of solution +tol = 1D-15; + +//Initial guess +x0 = [10 10]; + +disp(x0,'Initial guess value is'); + +//Obtaining solution using fsolve +[x ,v ,info] = fsolve(x0,SLEs,tol) +clc +select info +case 0 + mprintf('\n improper input parameters\n'); +case 1 + mprintf('\n algorithm estimates that the relative error between x and the solution is at most tol\n'); +case 2 + mprintf('\n number of calls to fcn reached\n'); +case 3 + mprintf('\n tol is too small. No further improvement in the approximate solution x is possible\n'); +else + mprintf('\n iteration is not making good progress\n'); +end +disp(x,'The solution is ') +disp(v,'the function value at solution') + + |