summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/stereo/matching.hpp
blob: 2238961935d99d14068492c1ab8119a5829f6111 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
//By downloading, copying, installing or using the software you agree to this license.
//If you do not agree to this license, do not download, install,
//copy or use the software.
//
//
//                          License Agreement
//               For Open Source Computer Vision Library
//                       (3-clause BSD License)
//
//Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
//Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
//Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
//Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
//Copyright (C) 2015, OpenCV Foundation, all rights reserved.
//Copyright (C) 2015, Itseez Inc., all rights reserved.
//Third party copyrights are property of their respective owners.
//
//Redistribution and use in source and binary forms, with or without modification,
//are permitted provided that the following conditions are met:
//
//  * Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimer.
//
//  * Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
//  * Neither the names of the copyright holders nor the names of the contributors
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
//
//This software is provided by the copyright holders and contributors "as is" and
//any express or implied warranties, including, but not limited to, the implied
//warranties of merchantability and fitness for a particular purpose are disclaimed.
//In no event shall copyright holders or contributors be liable for any direct,
//indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
//loss of use, data, or profits; or business interruption) however caused
//and on any theory of liability, whether in contract, strict liability,
//or tort (including negligence or otherwise) arising in any way out of
//the use of this software, even if advised of the possibility of such damage.

/*****************************************************************************************************************\
*   The interface contains the main methods for computing the matching between the left and right images	      *
*                                                                                                                 *
\******************************************************************************************************************/
#include <stdint.h>

#ifndef _OPENCV_MATCHING_HPP_
#define _OPENCV_MATCHING_HPP_
#ifdef __cplusplus

namespace cv
{
    namespace stereo
    {
        class Matching
        {
        private:
            //!The maximum disparity
            int maxDisparity;
            //!the factor by which we are multiplying the disparity
            int scallingFactor;
            //!the confidence to which a min disparity found is good or not
            double confidenceCheck;
            //!the LUT used in case SSE is not available
            int hamLut[65537];
            //!function used for getting the minimum disparity from the cost volume"
            static int minim(short *c, int iwpj, int widthDisp,const double confidence, const int search_region)
            {
                double mini, mini2, mini3;
                mini = mini2 = mini3 = DBL_MAX;
                int index = 0;
                int iw = iwpj;
                int widthDisp2;
                widthDisp2 = widthDisp;
                widthDisp -= 1;
                for (int i = 0; i <= widthDisp; i++)
                {
                    if (c[(iw + i * search_region) * widthDisp2 + i] < mini)
                    {
                        mini3 = mini2;
                        mini2 = mini;
                        mini = c[(iw + i * search_region) * widthDisp2 + i];
                        index = i;
                    }
                    else if (c[(iw + i * search_region) * widthDisp2 + i] < mini2)
                    {
                        mini3 = mini2;
                        mini2 = c[(iw + i * search_region) * widthDisp2 + i];
                    }
                    else if (c[(iw + i * search_region) * widthDisp2 + i] < mini3)
                    {
                        mini3 = c[(iw + i * search_region) * widthDisp2 + i];
                    }
                }
                if(mini != 0)
                {
                    if (mini3 / mini <= confidence)
                        return index;
                }
                return -1;
            }
            //!Interpolate in order to obtain better results
            //!function for refining the disparity at sub pixel using simetric v
            static double symetricVInterpolation(short *c, int iwjp, int widthDisp, int winDisp,const int search_region)
            {
                if (winDisp == 0 || winDisp == widthDisp - 1)
                    return winDisp;
                double m2m1, m3m1, m3, m2, m1;
                m2 = c[(iwjp + (winDisp - 1) * search_region) * widthDisp + winDisp - 1];
                m3 = c[(iwjp + (winDisp + 1) * search_region)* widthDisp + winDisp + 1];
                m1 = c[(iwjp + winDisp * search_region) * widthDisp + winDisp];
                m2m1 = m2 - m1;
                m3m1 = m3 - m1;
                if (m2m1 == 0 || m3m1 == 0) return winDisp;
                double p;
                p = 0;
                if (m2 > m3)
                {
                    p = (0.5 - 0.25 * ((m3m1 * m3m1) / (m2m1 * m2m1) + (m3m1 / m2m1)));
                }
                else
                {
                    p = -1 * (0.5 - 0.25 * ((m2m1 * m2m1) / (m3m1 * m3m1) + (m2m1 / m3m1)));
                }
                if (p >= -0.5 && p <= 0.5)
                    p = winDisp + p;
                return p;
            }
            //!a pre processing function that generates the Hamming LUT in case the algorithm will ever be used on platform where SSE is not available
            void hammingLut()
            {
                for (int i = 0; i <= 65536; i++)
                {
                    int dist = 0;
                    int j = i;
                    //we number the bits from our number
                    while (j)
                    {
                        dist = dist + 1;
                        j = j & (j - 1);
                    }
                    hamLut[i] = dist;
                }
            }
            //!the class used in computing the hamming distance
            class hammingDistance : public ParallelLoopBody
            {
            private:
                int *left, *right;
                short *c;
                int v,kernelSize, width;
                int MASK;
                int *hammLut;
            public :
                hammingDistance(const Mat &leftImage, const Mat &rightImage, short *cost, int maxDisp, int kerSize, int *hammingLUT):
                    left((int *)leftImage.data), right((int *)rightImage.data), c(cost), v(maxDisp),kernelSize(kerSize),width(leftImage.cols), MASK(65535), hammLut(hammingLUT){}
                void operator()(const cv::Range &r) const {
                    for (int i = r.start; i <= r.end ; i++)
                    {
                        int iw = i * width;
                        for (int j = kernelSize; j < width - kernelSize; j++)
                        {
                            int j2;
                            int xorul;
                            int iwj;
                            iwj = iw + j;
                            for (int d = 0; d <= v; d++)
                            {
                                j2 = (0 > j - d) ? (0) : (j - d);
                                xorul = left[(iwj)] ^ right[(iw + j2)];
#if CV_POPCNT
                                if (checkHardwareSupport(CV_CPU_POPCNT))
                                {
                                    c[(iwj)* (v + 1) + d] = (short)_mm_popcnt_u32(xorul);
                                }
                                else
#endif
                                {
                                    c[(iwj)* (v + 1) + d] = (short)(hammLut[xorul & MASK] + hammLut[(xorul >> 16) & MASK]);
                                }
                            }
                        }
                    }
                }
            };
            //!cost aggregation
            class agregateCost:public ParallelLoopBody
            {
            private:
                int win;
                short *c, *parSum;
                int maxDisp,width, height;
            public:
                agregateCost(const Mat &partialSums, int windowSize, int maxDispa, Mat &cost)
                {
                    win = windowSize / 2;
                    c = (short *)cost.data;
                    maxDisp = maxDispa;
                    width = cost.cols / ( maxDisp + 1) - 1;
                    height = cost.rows - 1;
                    parSum = (short *)partialSums.data;
                }
                void operator()(const cv::Range &r) const {
                    for (int i = r.start; i <= r.end; i++)
                    {
                        int iwi = (i - 1) * width;
                        for (int j = win + 1; j <= width - win - 1; j++)
                        {
                            int w1 = ((i + win + 1) * width + j + win) * (maxDisp + 1);
                            int w2 = ((i - win) * width + j - win - 1) * (maxDisp + 1);
                            int w3 = ((i + win + 1) * width + j - win - 1) * (maxDisp + 1);
                            int w4 = ((i - win) * width + j + win) * (maxDisp + 1);
                            int w = (iwi + j - 1) * (maxDisp + 1);
                            for (int d = 0; d <= maxDisp; d++)
                            {
                                c[w + d] = parSum[w1 + d] + parSum[w2 + d]
                                - parSum[w3 + d] - parSum[w4 + d];
                            }
                        }
                    }
                }
            };
            //!class that is responsable for generating the disparity map
            class makeMap:public ParallelLoopBody
            {
            private:
                //enum used to notify wether we are searching on the vertical ie (lr) or diagonal (rl)
                enum {CV_VERTICAL_SEARCH, CV_DIAGONAL_SEARCH};
                int width,disparity,scallingFact,th;
                double confCheck;
                uint8_t *map;
                short *c;
            public:
                makeMap(const Mat &costVolume, int threshold, int maxDisp, double confidence,int scale, Mat &mapFinal)
                {
                    c = (short *)costVolume.data;
                    map = mapFinal.data;
                    disparity = maxDisp;
                    width = costVolume.cols / ( disparity + 1) - 1;
                    th = threshold;
                    scallingFact = scale;
                    confCheck = confidence;
                }
                void operator()(const cv::Range &r) const {
                    for (int i = r.start; i <= r.end ; i++)
                    {
                        int lr;
                        int v = -1;
                        double p1, p2;
                        int iw = i * width;
                        for (int j = 0; j < width; j++)
                        {
                            lr = Matching:: minim(c, iw + j, disparity + 1, confCheck,CV_VERTICAL_SEARCH);
                            if (lr != -1)
                            {
                                v = Matching::minim(c, iw + j - lr, disparity + 1, confCheck,CV_DIAGONAL_SEARCH);
                                if (v != -1)
                                {
                                    p1 = Matching::symetricVInterpolation(c, iw + j - lr, disparity + 1, v,CV_DIAGONAL_SEARCH);
                                    p2 = Matching::symetricVInterpolation(c, iw + j, disparity + 1, lr,CV_VERTICAL_SEARCH);
                                    if (abs(p1 - p2) <= th)
                                        map[iw + j] = (uint8_t)((p2)* scallingFact);
                                    else
                                    {
                                        map[iw + j] = 0;
                                    }
                                }
                                else
                                {
                                    if (width - j <= disparity)
                                    {
                                        p2 = Matching::symetricVInterpolation(c, iw + j, disparity + 1, lr,CV_VERTICAL_SEARCH);
                                        map[iw + j] = (uint8_t)(p2* scallingFact);
                                    }
                                }
                            }
                            else
                            {
                                map[iw + j] = 0;
                            }
                        }
                    }
                }
            };
            //!median 1x9 paralelized filter
            template <typename T>
            class Median1x9:public ParallelLoopBody
            {
            private:
                T *original;
                T *filtered;
                int height, width;
            public:
                Median1x9(const Mat &originalImage, Mat &filteredImage)
                {
                    original = (T *)originalImage.data;
                    filtered = (T *)filteredImage.data;
                    height = originalImage.rows;
                    width = originalImage.cols;
                }
                void operator()(const cv::Range &r) const{
                    for (int m = r.start; m <= r.end; m++)
                    {
                        for (int n = 4; n < width - 4; ++n)
                        {
                            int k = 0;
                            T window[9];
                            for (int i = n - 4; i <= n + 4; ++i)
                                window[k++] = original[m * width + i];
                            for (int j = 0; j < 5; ++j)
                            {
                                int min = j;
                                for (int l = j + 1; l < 9; ++l)
                                    if (window[l] < window[min])
                                        min = l;
                                const T temp = window[j];
                                window[j] = window[min];
                                window[min] = temp;
                            }
                            filtered[m  * width + n] = window[4];
                        }
                    }
                }
            };
            //!median 9x1 paralelized filter
            template <typename T>
            class Median9x1:public ParallelLoopBody
            {
            private:
                T *original;
                T *filtered;
                int height, width;
            public:
                Median9x1(const Mat &originalImage, Mat &filteredImage)
                {
                    original = (T *)originalImage.data;
                    filtered = (T *)filteredImage.data;
                    height = originalImage.rows;
                    width = originalImage.cols;
                }
                void operator()(const Range &r) const{
                    for (int n = r.start; n <= r.end; ++n)
                    {
                        for (int m = 4; m < height - 4; ++m)
                        {
                            int k = 0;
                            T window[9];
                            for (int i = m - 4; i <= m + 4; ++i)
                                window[k++] = original[i * width + n];
                            for (int j = 0; j < 5; j++)
                            {
                                int min = j;
                                for (int l = j + 1; l < 9; ++l)
                                    if (window[l] < window[min])
                                        min = l;
                                const T temp = window[j];
                                window[j] = window[min];
                                window[min] = temp;
                            }
                            filtered[m  * width + n] = window[4];
                        }
                    }
                }
            };
        protected:
            //arrays used in the region removal
            Mat speckleY;
            Mat speckleX;
            Mat puss;
            //int *specklePointX;
            //int *specklePointY;
            //long long *pus;
            int previous_size;
            //!method for setting the maximum disparity
            void setMaxDisparity(int val)
            {
                CV_Assert(val > 10);
                this->maxDisparity = val;
            }
            //!method for getting the disparity
            int getMaxDisparity()
            {
                return this->maxDisparity;
            }
            //! a number by which the disparity will be multiplied for better display
            void setScallingFactor(int val)
            {
                CV_Assert(val > 0);
                this->scallingFactor = val;
            }
            //!method for getting the scalling factor
            int getScallingFactor()
            {
                return scallingFactor;
            }
            //!setter for the confidence check
            void setConfidence(double val)
            {
                CV_Assert(val >= 1);
                this->confidenceCheck = val;
            }
            //getter for confidence check
            double getConfidence()
            {
                return confidenceCheck;
            }
            //! Hamming distance computation method
            //! leftImage and rightImage are the two transformed images
            //! the cost is the resulted cost volume and kernel Size is the size of the matching window
            void hammingDistanceBlockMatching(const Mat &leftImage, const Mat &rightImage, Mat &cost, const int kernelSize= 9)
            {
                CV_Assert(leftImage.cols == rightImage.cols);
                CV_Assert(leftImage.rows == rightImage.rows);
                CV_Assert(kernelSize % 2 != 0);
                CV_Assert(cost.rows == leftImage.rows);
                CV_Assert(cost.cols / (maxDisparity + 1) == leftImage.cols);
                short *c = (short *)cost.data;
                memset(c, 0, sizeof(c[0]) * leftImage.cols * leftImage.rows * (maxDisparity + 1));
                parallel_for_(cv::Range(kernelSize / 2,leftImage.rows - kernelSize / 2), hammingDistance(leftImage,rightImage,(short *)cost.data,maxDisparity,kernelSize / 2,hamLut));
            }
            //preprocessing the cost volume in order to get it ready for aggregation
            void costGathering(const Mat &hammingDistanceCost, Mat &cost)
            {
                CV_Assert(hammingDistanceCost.rows == hammingDistanceCost.rows);
                CV_Assert(hammingDistanceCost.type() == CV_16S);
                CV_Assert(cost.type() == CV_16S);
                int maxDisp = maxDisparity;
                int width = cost.cols / ( maxDisp + 1) - 1;
                int height = cost.rows - 1;
                short *c = (short *)cost.data;
                short *ham = (short *)hammingDistanceCost.data;
                memset(c, 0, sizeof(c[0]) * (width + 1) * (height + 1) * (maxDisp + 1));
                for (int i = 1; i <= height; i++)
                {
                    int iw = i * width;
                    int iwi = (i - 1) * width;
                    for (int j = 1; j <= width; j++)
                    {
                        int iwj = (iw + j) * (maxDisp + 1);
                        int iwjmu = (iw + j - 1) * (maxDisp + 1);
                        int iwijmu = (iwi + j - 1) * (maxDisp + 1);
                        for (int d = 0; d <= maxDisp; d++)
                        {
                            c[iwj + d] = ham[iwijmu + d] + c[iwjmu + d];
                        }
                    }
                }
                for (int i = 1; i <= height; i++)
                {
                    for (int j = 1; j <= width; j++)
                    {
                        int iwj = (i * width + j) * (maxDisp + 1);
                        int iwjmu = ((i - 1)  * width + j) * (maxDisp + 1);
                        for (int d = 0; d <= maxDisp; d++)
                        {
                            c[iwj + d] += c[iwjmu + d];
                        }
                    }
                }
            }
            //!The aggregation on the cost volume
            void blockAgregation(const Mat &partialSums, int windowSize, Mat &cost)
            {
                CV_Assert(windowSize % 2 != 0);
                CV_Assert(partialSums.rows == cost.rows);
                CV_Assert(partialSums.cols == cost.cols);
                int win = windowSize / 2;
                short *c = (short *)cost.data;
                int maxDisp = maxDisparity;
                int width = cost.cols / ( maxDisp + 1) - 1;
                int height = cost.rows - 1;
                memset(c, 0, sizeof(c[0]) * width * height * (maxDisp + 1));
                parallel_for_(cv::Range(win + 1,height - win - 1), agregateCost(partialSums,windowSize,maxDisp,cost));
            }
            //!remove small regions that have an area smaller than t, we fill the region with the average of the good pixels around it
            template <typename T>
            void smallRegionRemoval(const Mat &currentMap, int t, Mat &out)
            {
                CV_Assert(currentMap.cols == out.cols);
                CV_Assert(currentMap.rows == out.rows);
                CV_Assert(t >= 0);
                int *pus = (int *)puss.data;
                int *specklePointX = (int *)speckleX.data;
                int *specklePointY = (int *)speckleY.data;
                memset(pus, 0, previous_size * sizeof(pus[0]));
                T *map = (T *)currentMap.data;
                T *outputMap = (T *)out.data;
                int height = currentMap.rows;
                int width = currentMap.cols;
                T k = 1;
                int st, dr;
                int di[] = { -1, -1, -1, 0, 1, 1, 1, 0 },
                    dj[] = { -1, 0, 1, 1, 1, 0, -1, -1 };
                int speckle_size = 0;
                st = 0;
                dr = 0;
                for (int i = 1; i < height - 1; i++)
                {
                    int iw = i * width;
                    for (int j = 1; j < width - 1; j++)
                    {
                        if (map[iw + j] != 0)
                        {
                            outputMap[iw + j] = map[iw + j];
                        }
                        else if (map[iw + j] == 0)
                        {
                            T nr = 1;
                            T avg = 0;
                            speckle_size = dr;
                            specklePointX[dr] = i;
                            specklePointY[dr] = j;
                            pus[i * width + j] = 1;
                            dr++;
                            map[iw + j] = k;
                            while (st < dr)
                            {
                                int ii = specklePointX[st];
                                int jj = specklePointY[st];
                                //going on 8 directions
                                for (int d = 0; d < 8; d++)
                                {//if insisde
                                    if (ii + di[d] >= 0 && ii + di[d] < height && jj + dj[d] >= 0 && jj + dj[d] < width &&
                                        pus[(ii + di[d]) * width + jj + dj[d]] == 0)
                                    {
                                        T val = map[(ii + di[d]) * width + jj + dj[d]];
                                        if (val == 0)
                                        {
                                            map[(ii + di[d]) * width + jj + dj[d]] = k;
                                            specklePointX[dr] = (ii + di[d]);
                                            specklePointY[dr] = (jj + dj[d]);
                                            dr++;
                                            pus[(ii + di[d]) * width + jj + dj[d]] = 1;
                                        }//this means that my point is a good point to be used in computing the final filling value
                                        else if (val >= 1 && val < 250)
                                        {
                                            avg += val;
                                            nr++;
                                        }
                                    }
                                }
                                st++;
                            }//if hole size is smaller than a specified threshold we fill the respective hole with the average of the good neighbours
                            if (st - speckle_size <= t)
                            {
                                T fillValue = (T)(avg / nr);
                                while (speckle_size < st)
                                {
                                    int ii = specklePointX[speckle_size];
                                    int jj = specklePointY[speckle_size];
                                    outputMap[ii * width + jj] = fillValue;
                                    speckle_size++;
                                }
                            }
                        }
                    }
                }
            }
            //!Method responsible for generating the disparity map
            //!function for generating disparity maps at sub pixel level
            /* costVolume - represents the cost volume
            * width, height - represent the width and height of the iage
            *disparity - represents the maximum disparity
            *map - is the disparity map that will result
            *th - is the LR threshold
            */
            void dispartyMapFormation(const Mat &costVolume, Mat &mapFinal, int th)
            {
                uint8_t *map = mapFinal.data;
                int disparity = maxDisparity;
                int width = costVolume.cols / ( disparity + 1) - 1;
                int height = costVolume.rows - 1;
                memset(map, 0, sizeof(map[0]) * width * height);
                parallel_for_(Range(0,height - 1), makeMap(costVolume,th,disparity,confidenceCheck,scallingFactor,mapFinal));
            }
        public:
            //!a median filter of 1x9 and 9x1
            //!1x9 median filter
            template<typename T>
            void Median1x9Filter(const Mat &originalImage, Mat &filteredImage)
            {
                CV_Assert(originalImage.rows == filteredImage.rows);
                CV_Assert(originalImage.cols == filteredImage.cols);
                parallel_for_(Range(1,originalImage.rows - 2), Median1x9<T>(originalImage,filteredImage));
            }
            //!9x1 median filter
            template<typename T>
            void Median9x1Filter(const Mat &originalImage, Mat &filteredImage)
            {
                CV_Assert(originalImage.cols == filteredImage.cols);
                CV_Assert(originalImage.cols == filteredImage.cols);
                parallel_for_(Range(1,originalImage.cols - 2), Median9x1<T>(originalImage,filteredImage));
            }
            //!constructor for the matching class
            //!maxDisp - represents the maximum disparity
            Matching(void)
            {
                hammingLut();
            }
            ~Matching(void)
            {
            }
            //constructor for the matching class
            //maxDisp - represents the maximum disparity
            //confidence - represents the confidence check
            Matching(int maxDisp, int scalling = 4, int confidence = 6)
            {
                //set the maximum disparity
                setMaxDisparity(maxDisp);
                //set scalling factor
                setScallingFactor(scalling);
                //set the value for the confidence
                setConfidence(confidence);
                //generate the hamming lut in case SSE is not available
                hammingLut();
            }
        };
    }
}
#endif
#endif
/*End of file*/