summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/dnn/all_layers.hpp
blob: 9d26b35e77584464d6ecafd967ba1aee936498cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_DNN_DNN_ALL_LAYERS_HPP__
#define __OPENCV_DNN_DNN_ALL_LAYERS_HPP__
#include <opencv2/dnn.hpp>

namespace cv
{
namespace dnn
{
//! @addtogroup dnn
//! @{

/** @defgroup dnnLayerList Partial List of Implemented Layers
  @{
  This subsection of dnn module contains information about bult-in layers and their descriptions.

  Classes listed here, in fact, provides C++ API for creating intances of bult-in layers.
  In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones.
  You can use both API, but factory API is less convinient for native C++ programming and basically designed for use inside importers (see @ref Importer, @ref createCaffeImporter(), @ref createTorchImporter()).

  Bult-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers.
  In partuclar, the following layers and Caffe @ref Importer were tested to reproduce <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">Caffe</a> functionality:
  - Convolution
  - Deconvolution
  - Pooling
  - InnerProduct
  - TanH, ReLU, Sigmoid, BNLL, Power, AbsVal
  - Softmax
  - Reshape, Flatten, Slice, Split
  - LRN
  - MVN
  - Dropout (since it does nothing on forward pass -))
*/

    //! LSTM recurrent layer
    class CV_EXPORTS_W LSTMLayer : public Layer
    {
    public:
        /** Creates instance of LSTM layer */
        static CV_WRAP Ptr<LSTMLayer> create();

        /** Set trained weights for LSTM layer.
        LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.

        Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state.
        Than current output and current cell state is computed as follows:
        @f{eqnarray*}{
        h_t &= o_t \odot tanh(c_t),               \\
        c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
        @f}
        where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.

        Gates are computed as follows:
        @f{eqnarray*}{
        i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\
        f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\
        o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\
        g_t &= tanh   &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\
        @f}
        where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
        @f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.

        For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$
        (i.e. @f$W_x@f$ is vertical contacentaion of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$.
        The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$
        and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$.

        @param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_h @f$)
        @param Wx is matrix defining how current input is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_x @f$)
        @param b  is bias vector (i.e. according to abovemtioned notation is @f$ b @f$)
        */
        CV_WRAP virtual void setWeights(const Blob &Wh, const Blob &Wx, const Blob &b) = 0;

        /** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape.
          * @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used,
          * where `Wh` is parameter from setWeights().
          */
        CV_WRAP virtual void setOutShape(const BlobShape &outTailShape = BlobShape::empty()) = 0;

        /** @brief Set @f$ h_{t-1} @f$ value that will be used in next forward() calls.
          * @details By-default @f$ h_{t-1} @f$ is inited by zeros and updated after each forward() call.
          */
        CV_WRAP virtual void setH(const Blob &H) = 0;
        /** @brief Returns current @f$ h_{t-1} @f$ value (deep copy). */
        CV_WRAP virtual Blob getH() const = 0;

        /** @brief Set @f$ c_{t-1} @f$ value that will be used in next forward() calls.
          * @details By-default @f$ c_{t-1} @f$ is inited by zeros and updated after each forward() call.
          */
        CV_WRAP virtual void setC(const Blob &C) = 0;
        /** @brief Returns current @f$ c_{t-1} @f$ value (deep copy). */
        CV_WRAP virtual Blob getC() const = 0;

        /** @brief Specifies either interpet first dimension of input blob as timestamp dimenion either as sample.
          *
          * If flag is set to true then shape of input blob will be interpeted as [`T`, `N`, `[data dims]`] where `T` specifies number of timpestamps, `N` is number of independent streams.
          * In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times.
          *
          * If flag is set to false then shape of input blob will be interpeted as [`N`, `[data dims]`].
          * In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`].
          */
        CV_WRAP virtual void setUseTimstampsDim(bool use = true) = 0;

        /** @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output.
         * @details Shape of the second output is the same as first output.
         */
        CV_WRAP virtual void setProduceCellOutput(bool produce = false) = 0;

        /** In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$).
         * @param input should contain packed values @f$x_t@f$
         * @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true).
         *
         * If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`],
         * where `T` specifies number of timpestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]).
         *
         * If setUseTimstampsDim() is set to fase then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension.
         * (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]).
        */
        void forward(std::vector<Blob*> &input, std::vector<Blob> &output);

        int inputNameToIndex(String inputName);

        int outputNameToIndex(String outputName);
    };

    //! Classical recurrent layer
    class CV_EXPORTS_W RNNLayer : public Layer
    {
    public:
        /** Creates instance of RNNLayer */
        static CV_WRAP Ptr<RNNLayer> create();

        /** Setups learned weights.

        Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows:
        @f{eqnarray*}{
        h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h),  \\
        o_t &= tanh&(W_{ho} h_t + b_o),
        @f}

        @param Wxh is @f$ W_{xh} @f$ matrix
        @param bh  is @f$ b_{h}  @f$ vector
        @param Whh is @f$ W_{hh} @f$ matrix
        @param Who is @f$ W_{xo} @f$ matrix
        @param bo  is @f$ b_{o}  @f$ vector
        */
        CV_WRAP virtual void setWeights(const Blob &Wxh, const Blob &bh, const Blob &Whh, const Blob &Who, const Blob &bo) = 0;

        /** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output.
         * @details Shape of the second output is the same as first output.
         */
        CV_WRAP virtual void setProduceHiddenOutput(bool produce = false) = 0;

        /** Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.

        @param input should contain packed input @f$x_t@f$.
        @param output should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).

        @p input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.

        @p output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.

        If setProduceHiddenOutput() is set to true then @p output[1] will contain a Blob with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
        */
        void forward(std::vector<Blob*> &input, std::vector<Blob> &output);
    };

    class CV_EXPORTS_W BaseConvolutionLayer : public Layer
    {
    public:

        CV_PROP_RW Size kernel, stride, pad, dilation, adjustPad;
        CV_PROP_RW String padMode;
    };

    class CV_EXPORTS_W ConvolutionLayer : public BaseConvolutionLayer
    {
    public:

        static CV_WRAP Ptr<BaseConvolutionLayer> create(Size kernel = Size(3, 3), Size stride = Size(1, 1), Size pad = Size(0, 0), Size dilation = Size(1, 1));
    };

    class CV_EXPORTS_W DeconvolutionLayer : public BaseConvolutionLayer
    {
    public:

        static CV_WRAP Ptr<BaseConvolutionLayer> create(Size kernel = Size(3, 3), Size stride = Size(1, 1), Size pad = Size(0, 0), Size dilation = Size(1, 1), Size adjustPad = Size());
    };

    class CV_EXPORTS_W LRNLayer : public Layer
    {
    public:

        enum Type
        {
            CHANNEL_NRM,
            SPATIAL_NRM
        };
        CV_PROP_RW int type;

        CV_PROP_RW int size;
        CV_PROP_RW double alpha, beta, bias;
        CV_PROP_RW bool normBySize;

        static CV_WRAP Ptr<LRNLayer> create(int type = LRNLayer::CHANNEL_NRM, int size = 5,
                                            double alpha = 1, double beta = 0.75, double bias = 1,
                                            bool normBySize = true);
    };

    class CV_EXPORTS_W PoolingLayer : public Layer
    {
    public:

        enum Type
        {
            MAX,
            AVE,
            STOCHASTIC
        };

        CV_PROP_RW int type;
        CV_PROP_RW Size kernel, stride, pad;
        CV_PROP_RW bool globalPooling;
        CV_PROP_RW String padMode;

        static CV_WRAP Ptr<PoolingLayer> create(int type = PoolingLayer::MAX, Size kernel = Size(2, 2),
                                                Size stride = Size(1, 1), Size pad = Size(0, 0),
                                                const cv::String& padMode = "");
        static CV_WRAP Ptr<PoolingLayer> createGlobal(int type = PoolingLayer::MAX);
    };

    class CV_EXPORTS_W SoftmaxLayer : public Layer
    {
    public:

        static CV_WRAP Ptr<SoftmaxLayer> create(int axis = 1);
    };

    class CV_EXPORTS_W InnerProductLayer : public Layer
    {
    public:
        CV_PROP_RW int axis;

        static CV_WRAP Ptr<InnerProductLayer> create(int axis = 1);
    };

    class CV_EXPORTS_W MVNLayer : public Layer
    {
    public:
        CV_PROP_RW double eps;
        CV_PROP_RW bool normVariance, acrossChannels;

        static CV_WRAP Ptr<MVNLayer> create(bool normVariance = true, bool acrossChannels = false, double eps = 1e-9);
    };

    /* Reshaping */

    class CV_EXPORTS_W ReshapeLayer : public Layer
    {
    public:
        CV_PROP_RW BlobShape newShapeDesc;
        CV_PROP_RW Range newShapeRange;

        static CV_WRAP Ptr<ReshapeLayer> create(const BlobShape &newShape, Range applyingRange = Range::all(),
                                                bool enableReordering = false);
    };

    class CV_EXPORTS_W ConcatLayer : public Layer
    {
    public:
        int axis;

        static CV_WRAP Ptr<ConcatLayer> create(int axis = 1);
    };

    class CV_EXPORTS_W SplitLayer : public Layer
    {
    public:
        int outputsCount; //!< Number of copies that will be produced (is ignored when negative).

        static CV_WRAP Ptr<SplitLayer> create(int outputsCount = -1);
    };

    class CV_EXPORTS_W SliceLayer : public Layer
    {
    public:
        CV_PROP_RW int axis;
        CV_PROP std::vector<int> sliceIndices;

        static CV_WRAP Ptr<SliceLayer> create(int axis);
        static CV_WRAP Ptr<SliceLayer> create(int axis, const std::vector<int> &sliceIndices);
    };

    /* Activations */

    class CV_EXPORTS_W ReLULayer : public Layer
    {
    public:
        CV_PROP_RW double negativeSlope;

        static CV_WRAP Ptr<ReLULayer> create(double negativeSlope = 0);
    };

    class CV_EXPORTS_W ChannelsPReLULayer : public Layer
    {
    public:
        static CV_WRAP Ptr<ChannelsPReLULayer> create();
    };

    class CV_EXPORTS_W TanHLayer : public Layer
    {
    public:
        static CV_WRAP Ptr<TanHLayer> create();
    };

    class CV_EXPORTS_W SigmoidLayer : public Layer
    {
    public:
        static CV_WRAP Ptr<SigmoidLayer> create();
    };

    class CV_EXPORTS_W BNLLLayer : public Layer
    {
    public:
        static CV_WRAP Ptr<BNLLLayer> create();
    };

    class CV_EXPORTS_W AbsLayer : public Layer
    {
    public:
        static CV_WRAP Ptr<AbsLayer> create();
    };

    class CV_EXPORTS_W PowerLayer : public Layer
    {
    public:
        CV_PROP_RW double power, scale, shift;

        static CV_WRAP Ptr<PowerLayer> create(double power = 1, double scale = 1, double shift = 0);
    };

    /* Layers using in semantic segmentation */

    class CV_EXPORTS_W CropLayer : public Layer
    {
    public:
        CV_PROP int startAxis;
        CV_PROP std::vector<int> offset;

        static Ptr<CropLayer> create(int start_axis, const std::vector<int> &offset);
    };

    class CV_EXPORTS_W EltwiseLayer : public Layer
    {
    public:
        enum EltwiseOp
        {
            PROD = 0,
            SUM = 1,
            MAX = 2,
        };

        static Ptr<EltwiseLayer> create(EltwiseOp op, const std::vector<int> &coeffs);
    };

    class CV_EXPORTS_W BatchNormLayer : public Layer
    {
    public:
        static CV_WRAP Ptr<BatchNormLayer> create(float eps, bool has_weights, bool has_bias);
    };

    class CV_EXPORTS_W MaxUnpoolLayer : public Layer
    {
    public:
        static CV_WRAP Ptr<MaxUnpoolLayer> create(Size unpoolSize);
    };

//! @}
//! @}

}
}
#endif