summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/calib3d.hpp
blob: 5a0e020d31fc830a5ee42dd058627f69ebe4c630 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_CALIB3D_HPP
#define OPENCV_CALIB3D_HPP

#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core/affine.hpp"

/**
  @defgroup calib3d Camera Calibration and 3D Reconstruction

The functions in this section use a so-called pinhole camera model. In this model, a scene view is
formed by projecting 3D points into the image plane using a perspective transformation.

\f[s  \; m' = A [R|t] M'\f]

or

\f[s  \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
\begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_1  \\
r_{21} & r_{22} & r_{23} & t_2  \\
r_{31} & r_{32} & r_{33} & t_3
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}\f]

where:

-   \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
-   \f$(u, v)\f$ are the coordinates of the projection point in pixels
-   \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
-   \f$(cx, cy)\f$ is a principal point that is usually at the image center
-   \f$fx, fy\f$ are the focal lengths expressed in pixel units.

Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
(multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
is equivalent to the following (when \f$z \ne 0\f$ ):

\f[\begin{array}{l}
\vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
x' = x/z \\
y' = y/z \\
u = f_x*x' + c_x \\
v = f_y*y' + c_y
\end{array}\f]

The following figure illustrates the pinhole camera model.

![Pinhole camera model](pics/pinhole_camera_model.png)

Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
So, the above model is extended as:

\f[\begin{array}{l}
\vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
x' = x/z \\
y' = y/z \\
x'' = x'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
y'' = y'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
\text{where} \quad r^2 = x'^2 + y'^2  \\
u = f_x*x'' + c_x \\
v = f_y*y'' + c_y
\end{array}\f]

\f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
coefficients. Higher-order coefficients are not considered in OpenCV.

The next figure shows two common types of radial distortion: barrel distortion (typically \f$ k_1 > 0 \f$ and pincushion distortion (typically \f$ k_1 < 0 \f$).

![](pics/distortion_examples.png)

In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
\f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07.

\f[\begin{array}{l}
s\vecthree{x'''}{y'''}{1} =
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
u = f_x*x''' + c_x \\
v = f_y*y''' + c_y
\end{array}\f]

where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$
and \f$\tau_y\f$, respectively,

\f[
R(\tau_x, \tau_y) =
\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
{0}{\cos(\tau_x)}{\sin(\tau_x)}
{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
\f]

In the functions below the coefficients are passed or returned as

\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]

vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
parameters. And they remain the same regardless of the captured image resolution. If, for example, a
camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
\f$c_y\f$ need to be scaled appropriately.

The functions below use the above model to do the following:

-   Project 3D points to the image plane given intrinsic and extrinsic parameters.
-   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
projections.
-   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
pattern (every view is described by several 3D-2D point correspondences).
-   Estimate the relative position and orientation of the stereo camera "heads" and compute the
*rectification* transformation that makes the camera optical axes parallel.

@note
   -   A calibration sample for 3 cameras in horizontal position can be found at
        opencv_source_code/samples/cpp/3calibration.cpp
    -   A calibration sample based on a sequence of images can be found at
        opencv_source_code/samples/cpp/calibration.cpp
    -   A calibration sample in order to do 3D reconstruction can be found at
        opencv_source_code/samples/cpp/build3dmodel.cpp
    -   A calibration sample of an artificially generated camera and chessboard patterns can be
        found at opencv_source_code/samples/cpp/calibration_artificial.cpp
    -   A calibration example on stereo calibration can be found at
        opencv_source_code/samples/cpp/stereo_calib.cpp
    -   A calibration example on stereo matching can be found at
        opencv_source_code/samples/cpp/stereo_match.cpp
    -   (Python) A camera calibration sample can be found at
        opencv_source_code/samples/python/calibrate.py

  @{
    @defgroup calib3d_fisheye Fisheye camera model

    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
    matrix X) The coordinate vector of P in the camera reference frame is:

    \f[Xc = R X + T\f]

    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
    and z the 3 coordinates of Xc:

    \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]

    The pinhole projection coordinates of P is [a; b] where

    \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]

    Fisheye distortion:

    \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]

    The distorted point coordinates are [x'; y'] where

    \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]

    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:

    \f[u = f_x (x' + \alpha y') + c_x \\
    v = f_y y' + c_y\f]

    @defgroup calib3d_c C API

  @}
 */

namespace cv
{

//! @addtogroup calib3d
//! @{

//! type of the robust estimation algorithm
enum { LMEDS  = 4, //!< least-median algorithm
       RANSAC = 8, //!< RANSAC algorithm
       RHO    = 16 //!< RHO algorithm
     };

enum { SOLVEPNP_ITERATIVE = 0,
       SOLVEPNP_EPNP      = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
       SOLVEPNP_P3P       = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
       SOLVEPNP_DLS       = 3, //!< A Direct Least-Squares (DLS) Method for PnP  @cite hesch2011direct
       SOLVEPNP_UPNP      = 4  //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive

};

enum { CALIB_CB_ADAPTIVE_THRESH = 1,
       CALIB_CB_NORMALIZE_IMAGE = 2,
       CALIB_CB_FILTER_QUADS    = 4,
       CALIB_CB_FAST_CHECK      = 8
     };

enum { CALIB_CB_SYMMETRIC_GRID  = 1,
       CALIB_CB_ASYMMETRIC_GRID = 2,
       CALIB_CB_CLUSTERING      = 4
     };

enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
       CALIB_FIX_ASPECT_RATIO    = 0x00002,
       CALIB_FIX_PRINCIPAL_POINT = 0x00004,
       CALIB_ZERO_TANGENT_DIST   = 0x00008,
       CALIB_FIX_FOCAL_LENGTH    = 0x00010,
       CALIB_FIX_K1              = 0x00020,
       CALIB_FIX_K2              = 0x00040,
       CALIB_FIX_K3              = 0x00080,
       CALIB_FIX_K4              = 0x00800,
       CALIB_FIX_K5              = 0x01000,
       CALIB_FIX_K6              = 0x02000,
       CALIB_RATIONAL_MODEL      = 0x04000,
       CALIB_THIN_PRISM_MODEL    = 0x08000,
       CALIB_FIX_S1_S2_S3_S4     = 0x10000,
       CALIB_TILTED_MODEL        = 0x40000,
       CALIB_FIX_TAUX_TAUY       = 0x80000,
       CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
       // only for stereo
       CALIB_FIX_INTRINSIC       = 0x00100,
       CALIB_SAME_FOCAL_LENGTH   = 0x00200,
       // for stereo rectification
       CALIB_ZERO_DISPARITY      = 0x00400,
       CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
     };

//! the algorithm for finding fundamental matrix
enum { FM_7POINT = 1, //!< 7-point algorithm
       FM_8POINT = 2, //!< 8-point algorithm
       FM_LMEDS  = 4, //!< least-median algorithm
       FM_RANSAC = 8  //!< RANSAC algorithm
     };



/** @brief Converts a rotation matrix to a rotation vector or vice versa.

@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
derivatives of the output array components with respect to the input array components.

\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos{\theta} I + (1- \cos{\theta} ) r r^T +  \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]

Inverse transformation can be also done easily, since

\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]

A rotation vector is a convenient and most compact representation of a rotation matrix (since any
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
 */
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );

/** @brief Finds a perspective transformation between two planes.

@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector\<Point2f\> .
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector\<Point2f\> .
@param method Method used to computed a homography matrix. The following methods are possible:
-   **0** - a regular method using all the points
-   **RANSAC** - RANSAC-based robust method
-   **LMEDS** - Least-Median robust method
-   **RHO**    - PROSAC-based robust method
@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|  >  \texttt{ransacReprojThreshold}\f]
then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
@param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
mask values are ignored.
@param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be.
@param confidence Confidence level, between 0 and 1.

The function finds and returns the perspective transformation \f$H\f$ between the source and the
destination planes:

\f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]

so that the back-projection error

\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]

is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.

However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix
using this subset and a simple least-square algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the median re-projection error for
LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.

Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.

The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).

The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix
cannot be estimated, an empty one will be returned.

@sa
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform


@note
   -   A example on calculating a homography for image matching can be found at
        opencv_source_code/samples/cpp/video_homography.cpp

 */
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
                                 int method = 0, double ransacReprojThreshold = 3,
                                 OutputArray mask=noArray(), const int maxIters = 2000,
                                 const double confidence = 0.995);

/** @overload */
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
                               OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );

/** @brief Computes an RQ decomposition of 3x3 matrices.

@param src 3x3 input matrix.
@param mtxR Output 3x3 upper-triangular matrix.
@param mtxQ Output 3x3 orthogonal matrix.
@param Qx Optional output 3x3 rotation matrix around x-axis.
@param Qy Optional output 3x3 rotation matrix around y-axis.
@param Qz Optional output 3x3 rotation matrix around z-axis.

The function computes a RQ decomposition using the given rotations. This function is used in
decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.

It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules
are only one of the possible solutions.
 */
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
                                OutputArray Qx = noArray(),
                                OutputArray Qy = noArray(),
                                OutputArray Qz = noArray());

/** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.

@param projMatrix 3x4 input projection matrix P.
@param cameraMatrix Output 3x3 camera matrix K.
@param rotMatrix Output 3x3 external rotation matrix R.
@param transVect Output 4x1 translation vector T.
@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
degrees.

The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.

It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned
tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.

The function is based on RQDecomp3x3 .
 */
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
                                             OutputArray rotMatrix, OutputArray transVect,
                                             OutputArray rotMatrixX = noArray(),
                                             OutputArray rotMatrixY = noArray(),
                                             OutputArray rotMatrixZ = noArray(),
                                             OutputArray eulerAngles =noArray() );

/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.

@param A First multiplied matrix.
@param B Second multiplied matrix.
@param dABdA First output derivative matrix d(A\*B)/dA of size
\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
@param dABdB Second output derivative matrix d(A\*B)/dB of size
\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .

The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
the elements of each of the two input matrices. The function is used to compute the Jacobian
matrices in stereoCalibrate but can also be used in any other similar optimization function.
 */
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );

/** @brief Combines two rotation-and-shift transformations.

@param rvec1 First rotation vector.
@param tvec1 First translation vector.
@param rvec2 Second rotation vector.
@param tvec2 Second translation vector.
@param rvec3 Output rotation vector of the superposition.
@param tvec3 Output translation vector of the superposition.
@param dr3dr1
@param dr3dt1
@param dr3dr2
@param dr3dt2
@param dt3dr1
@param dt3dt1
@param dt3dr2
@param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
tvec2, respectively.

The functions compute:

\f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]

where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.

Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.
 */
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
                             InputArray rvec2, InputArray tvec2,
                             OutputArray rvec3, OutputArray tvec3,
                             OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
                             OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
                             OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
                             OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );

/** @brief Projects 3D points to an image plane.

@param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
vector\<Point3f\> ), where N is the number of points in the view.
@param rvec Rotation vector. See Rodrigues for details.
@param tvec Translation vector.
@param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
vector\<Point2f\> .
@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
points with respect to components of the rotation vector, translation vector, focal lengths,
coordinates of the principal point and the distortion coefficients. In the old interface different
components of the jacobian are returned via different output parameters.
@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
matrix.

The function computes projections of 3D points to the image plane given intrinsic and extrinsic
camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
image points coordinates (as functions of all the input parameters) with respect to the particular
parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
re-projection error given the current intrinsic and extrinsic parameters.

@note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
passing zero distortion coefficients, you can get various useful partial cases of the function. This
means that you can compute the distorted coordinates for a sparse set of points or apply a
perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
 */
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
                                 InputArray rvec, InputArray tvec,
                                 InputArray cameraMatrix, InputArray distCoeffs,
                                 OutputArray imagePoints,
                                 OutputArray jacobian = noArray(),
                                 double aspectRatio = 0 );

/** @brief Finds an object pose from 3D-2D point correspondences.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
the model coordinate system to the camera coordinate system.
@param tvec Output translation vector.
@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
@param flags Method for solving a PnP problem:
-   **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
this case the function finds such a pose that minimizes reprojection error, that is the sum
of squared distances between the observed projections imagePoints and the projected (using
projectPoints ) objectPoints .
-   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem". In this case the
function requires exactly four object and image points.
-   **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation".
-   **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
"A Direct Least-Squares (DLS) Method for PnP".
-   **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
focal length.

The function estimates the object pose given a set of object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients.

@note
   -   An example of how to use solvePnP for planar augmented reality can be found at
        opencv_source_code/samples/python/plane_ar.py
   -   If you are using Python:
        - Numpy array slices won't work as input because solvePnP requires contiguous
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
        to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
        which requires 2-channel information.
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
   -   The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
       unstable and sometimes give completly wrong results. If you pass one of these two flags,
       **SOLVEPNP_EPNP** method will be used instead.
 */
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
                            InputArray cameraMatrix, InputArray distCoeffs,
                            OutputArray rvec, OutputArray tvec,
                            bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );

/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2f\> can be also passed here.
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
the model coordinate system to the camera coordinate system.
@param tvec Output translation vector.
@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
@param iterationsCount Number of iterations.
@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.
@param confidence The probability that the algorithm produces a useful result.
@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
@param flags Method for solving a PnP problem (see solvePnP ).

The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.

@note
   -   An example of how to use solvePNPRansac for object detection can be found at
        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
 */
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
                                  InputArray cameraMatrix, InputArray distCoeffs,
                                  OutputArray rvec, OutputArray tvec,
                                  bool useExtrinsicGuess = false, int iterationsCount = 100,
                                  float reprojectionError = 8.0, double confidence = 0.99,
                                  OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );

/** @brief Finds an initial camera matrix from 3D-2D point correspondences.

@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
coordinate space. In the old interface all the per-view vectors are concatenated. See
calibrateCamera for details.
@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
old interface all the per-view vectors are concatenated.
@param imageSize Image size in pixels used to initialize the principal point.
@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .

The function estimates and returns an initial camera matrix for the camera calibration process.
Currently, the function only supports planar calibration patterns, which are patterns where each
object point has z-coordinate =0.
 */
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints,
                                     Size imageSize, double aspectRatio = 1.0 );

/** @brief Finds the positions of internal corners of the chessboard.

@param image Source chessboard view. It must be an 8-bit grayscale or color image.
@param patternSize Number of inner corners per a chessboard row and column
( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
@param corners Output array of detected corners.
@param flags Various operation flags that can be zero or a combination of the following values:
-   **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
and white, rather than a fixed threshold level (computed from the average image brightness).
-   **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
applying fixed or adaptive thresholding.
-   **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
-   **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
and shortcut the call if none is found. This can drastically speed up the call in the
degenerate condition when no chessboard is observed.

The function attempts to determine whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
are found and they are placed in a certain order (row by row, left to right in every row).
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
squares touch each other. The detected coordinates are approximate, and to determine their positions
more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
different parameters if returned coordinates are not accurate enough.

Sample usage of detecting and drawing chessboard corners: :
@code
    Size patternsize(8,6); //interior number of corners
    Mat gray = ....; //source image
    vector<Point2f> corners; //this will be filled by the detected corners

    //CALIB_CB_FAST_CHECK saves a lot of time on images
    //that do not contain any chessboard corners
    bool patternfound = findChessboardCorners(gray, patternsize, corners,
            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
            + CALIB_CB_FAST_CHECK);

    if(patternfound)
      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
@endcode
@note The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments. Otherwise, if there is no
border and the background is dark, the outer black squares cannot be segmented properly and so the
square grouping and ordering algorithm fails.
 */
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
                                         int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );

//! finds subpixel-accurate positions of the chessboard corners
CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );

/** @brief Renders the detected chessboard corners.

@param image Destination image. It must be an 8-bit color image.
@param patternSize Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_column)).
@param corners Array of detected corners, the output of findChessboardCorners.
@param patternWasFound Parameter indicating whether the complete board was found or not. The
return value of findChessboardCorners should be passed here.

The function draws individual chessboard corners detected either as red circles if the board was not
found, or as colored corners connected with lines if the board was found.
 */
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
                                         InputArray corners, bool patternWasFound );

/** @brief Finds centers in the grid of circles.

@param image grid view of input circles; it must be an 8-bit grayscale or color image.
@param patternSize number of circles per row and column
( patternSize = Size(points_per_row, points_per_colum) ).
@param centers output array of detected centers.
@param flags various operation flags that can be one of the following values:
-   **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
-   **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
-   **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
perspective distortions but much more sensitive to background clutter.
@param blobDetector feature detector that finds blobs like dark circles on light background.

The function attempts to determine whether the input image contains a grid of circles. If it is, the
function locates centers of the circles. The function returns a non-zero value if all of the centers
have been found and they have been placed in a certain order (row by row, left to right in every
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.

Sample usage of detecting and drawing the centers of circles: :
@code
    Size patternsize(7,7); //number of centers
    Mat gray = ....; //source image
    vector<Point2f> centers; //this will be filled by the detected centers

    bool patternfound = findCirclesGrid(gray, patternsize, centers);

    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
@endcode
@note The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments.
 */
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
                                   OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
                                   const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());

/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
vector contains as many elements as the number of the pattern views. If the same calibration pattern
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
possible to use partially occluded patterns, or even different patterns in different views. Then,
the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
Z-coordinate of each input object point is 0.
In the old interface all the vectors of object points from different views are concatenated
together.
@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
In the old interface all the vectors of object points from different views are concatenated
together.
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
@param cameraMatrix Output 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.
@param distCoeffs Output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements.
@param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
k-th translation vector (see the next output parameter description) brings the calibration pattern
from the model coordinate space (in which object points are specified) to the world coordinate
space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
@param tvecs Output vector of translation vectors estimated for each pattern view.
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
 Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
 Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
 \f$R_i, T_i\f$ are concatenated 1x3 vectors.
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
@param flags Different flags that may be zero or a combination of the following values:
-   **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use solvePnP instead.
-   **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when
CV_CALIB_USE_INTRINSIC_GUESS is set too.
-   **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When
CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
-   **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
to zeros and stay zero.
-   **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion
coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
@param criteria Termination criteria for the iterative optimization algorithm.

@return the overall RMS re-projection error.

The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with a known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
(when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.

The algorithm performs the following steps:

-   Compute the initial intrinsic parameters (the option only available for planar calibration
    patterns) or read them from the input parameters. The distortion coefficients are all set to
    zeros initially unless some of CV_CALIB_FIX_K? are specified.

-   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
    done using solvePnP .

-   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
    that is, the total sum of squared distances between the observed feature points imagePoints and
    the projected (using the current estimates for camera parameters and the poses) object points
    objectPoints. See projectPoints for details.

@note
   If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
    calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
    (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
    then you have probably used patternSize=cvSize(rows,cols) instead of using
    patternSize=cvSize(cols,rows) in findChessboardCorners .

@sa
   findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
 */
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints, Size imageSize,
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                     OutputArray stdDeviationsIntrinsics,
                                     OutputArray stdDeviationsExtrinsics,
                                     OutputArray perViewErrors,
                                     int flags = 0, TermCriteria criteria = TermCriteria(
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );

/** @overload double calibrateCamera( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints, Size imageSize,
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                     OutputArray stdDeviations, OutputArray perViewErrors,
                                     int flags = 0, TermCriteria criteria = TermCriteria(
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
 */
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints, Size imageSize,
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                                     int flags = 0, TermCriteria criteria = TermCriteria(
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );

/** @brief Computes useful camera characteristics from the camera matrix.

@param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
stereoCalibrate .
@param imageSize Input image size in pixels.
@param apertureWidth Physical width in mm of the sensor.
@param apertureHeight Physical height in mm of the sensor.
@param fovx Output field of view in degrees along the horizontal sensor axis.
@param fovy Output field of view in degrees along the vertical sensor axis.
@param focalLength Focal length of the lens in mm.
@param principalPoint Principal point in mm.
@param aspectRatio \f$f_y/f_x\f$

The function computes various useful camera characteristics from the previously estimated camera
matrix.

@note
   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
    the chessboard pitch (it can thus be any value).
 */
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
                                           double apertureWidth, double apertureHeight,
                                           CV_OUT double& fovx, CV_OUT double& fovy,
                                           CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
                                           CV_OUT double& aspectRatio );

/** @brief Calibrates the stereo camera.

@param objectPoints Vector of vectors of the calibration pattern points.
@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
observed by the first camera.
@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
observed by the second camera.
@param cameraMatrix1 Input/output first camera matrix:
\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO ,
CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
matrix components must be initialized. See the flags description for details.
@param distCoeffs1 Input/output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
@param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
@param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
is similar to distCoeffs1 .
@param imageSize Size of the image used only to initialize intrinsic camera matrix.
@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
@param T Output translation vector between the coordinate systems of the cameras.
@param E Output essential matrix.
@param F Output fundamental matrix.
@param flags Different flags that may be zero or a combination of the following values:
-   **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
matrices are estimated.
-   **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
-   **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
-   **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
-   **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
.
-   **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
-   **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
zeros and fix there.
-   **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial
distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
-   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
-   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
-   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
@param criteria Termination criteria for the iterative optimization algorithm.

The function estimates transformation between two cameras making a stereo pair. If you have a stereo
camera where the relative position and orientation of two cameras is fixed, and if you computed
poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
need to know the position and orientation of the second camera relative to the first camera. This is
what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:

\f[R_2=R*R_1\f]
\f[T_2=R*T_1 + T,\f]

Optionally, it computes the essential matrix E:

\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]

where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
can also compute the fundamental matrix F:

\f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]

Besides the stereo-related information, the function can also perform a full calibration of each of
two cameras. However, due to the high dimensionality of the parameter space and noise in the input
data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.

Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
points in all the available views from both cameras. The function returns the final value of the
re-projection error.
 */
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
                                     Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
                                     int flags = CALIB_FIX_INTRINSIC,
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );


/** @brief Computes rectification transforms for each head of a calibrated stereo camera.

@param cameraMatrix1 First camera matrix.
@param distCoeffs1 First camera distortion parameters.
@param cameraMatrix2 Second camera matrix.
@param distCoeffs2 Second camera distortion parameters.
@param imageSize Size of the image used for stereo calibration.
@param R Rotation matrix between the coordinate systems of the first and the second cameras.
@param T Translation vector between coordinate systems of the cameras.
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.
@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Obviously, any intermediate value yields an intermediate result between
those two extreme cases.
@param newImageSize New image resolution after rectification. The same size should be passed to
initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).

The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:

-   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
    mainly along the x axis (with possible small vertical shift). In the rectified images, the
    corresponding epipolar lines in the left and right cameras are horizontal and have the same
    y-coordinate. P1 and P2 look like:

    \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]

    \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]

    where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
    CV_CALIB_ZERO_DISPARITY is set.

-   **Vertical stereo**: the first and the second camera views are shifted relative to each other
    mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:

    \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]

    \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]

    where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
    set.

As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
initialize the rectification map for each camera.

See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.

![image](pics/stereo_undistort.jpg)
 */
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
                                 Size imageSize, InputArray R, InputArray T,
                                 OutputArray R1, OutputArray R2,
                                 OutputArray P1, OutputArray P2,
                                 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
                                 double alpha = -1, Size newImageSize = Size(),
                                 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );

/** @brief Computes a rectification transform for an uncalibrated stereo camera.

@param points1 Array of feature points in the first image.
@param points2 The corresponding points in the second image. The same formats as in
findFundamentalMat are supported.
@param F Input fundamental matrix. It can be computed from the same set of point pairs using
findFundamentalMat .
@param imgSize Size of the image.
@param H1 Output rectification homography matrix for the first image.
@param H2 Output rectification homography matrix for the second image.
@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
rejected prior to computing the homographies. Otherwise,all the points are considered inliers.

The function computes the rectification transformations without knowing intrinsic parameters of the
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
related difference from stereoRectify is that the function outputs not the rectification
transformations in the object (3D) space, but the planar perspective transformations encoded by the
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .

@note
   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
    it would be better to correct it before computing the fundamental matrix and calling this
    function. For example, distortion coefficients can be estimated for each head of stereo camera
    separately by using calibrateCamera . Then, the images can be corrected using undistort , or
    just the point coordinates can be corrected with undistortPoints .
 */
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
                                             InputArray F, Size imgSize,
                                             OutputArray H1, OutputArray H2,
                                             double threshold = 5 );

//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
                                      Size imageSize, InputArray R12, InputArray T12,
                                      InputArray R13, InputArray T13,
                                      OutputArray R1, OutputArray R2, OutputArray R3,
                                      OutputArray P1, OutputArray P2, OutputArray P3,
                                      OutputArray Q, double alpha, Size newImgSize,
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );

/** @brief Returns the new camera matrix based on the free scaling parameter.

@param cameraMatrix Input camera matrix.
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
assumed.
@param imageSize Original image size.
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
stereoRectify for details.
@param newImgSize Image size after rectification. By default,it is set to imageSize .
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
undistorted image. See roi1, roi2 description in stereoRectify .
@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.
@return new_camera_matrix Output new camera matrix.

The function computes and returns the optimal new camera matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
coefficients, the computed new camera matrix, and newImageSize should be passed to
initUndistortRectifyMap to produce the maps for remap .
 */
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
                                            Size imageSize, double alpha, Size newImgSize = Size(),
                                            CV_OUT Rect* validPixROI = 0,
                                            bool centerPrincipalPoint = false);

/** @brief Converts points from Euclidean to homogeneous space.

@param src Input vector of N-dimensional points.
@param dst Output vector of N+1-dimensional points.

The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
 */
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );

/** @brief Converts points from homogeneous to Euclidean space.

@param src Input vector of N-dimensional points.
@param dst Output vector of N-1-dimensional points.

The function converts points homogeneous to Euclidean space using perspective projection. That is,
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
output point coordinates will be (0,0,0,...).
 */
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );

/** @brief Converts points to/from homogeneous coordinates.

@param src Input array or vector of 2D, 3D, or 4D points.
@param dst Output vector of 2D, 3D, or 4D points.

The function converts 2D or 3D points from/to homogeneous coordinates by calling either
convertPointsToHomogeneous or convertPointsFromHomogeneous.

@note The function is obsolete. Use one of the previous two functions instead.
 */
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );

/** @brief Calculates a fundamental matrix from the corresponding points in two images.

@param points1 Array of N points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param method Method for computing a fundamental matrix.
-   **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
-   **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
-   **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
-   **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
@param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
@param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level
of confidence (probability) that the estimated matrix is correct.
@param mask

The epipolar geometry is described by the following equation:

\f[[p_2; 1]^T F [p_1; 1] = 0\f]

where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively.

The function calculates the fundamental matrix using one of four methods listed above and returns
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
matrices sequentially).

The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
epipolar lines corresponding to the specified points. It can also be passed to
stereoRectifyUncalibrated to compute the rectification transformation. :
@code
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
    int point_count = 100;
    vector<Point2f> points1(point_count);
    vector<Point2f> points2(point_count);

    // initialize the points here ...
    for( int i = 0; i < point_count; i++ )
    {
        points1[i] = ...;
        points2[i] = ...;
    }

    Mat fundamental_matrix =
     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
@endcode
 */
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
                                     int method = FM_RANSAC,
                                     double param1 = 3., double param2 = 0.99,
                                     OutputArray mask = noArray() );

/** @overload */
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
                                   OutputArray mask, int method = FM_RANSAC,
                                   double param1 = 3., double param2 = 0.99 );

/** @brief Calculates an essential matrix from the corresponding points in two images.

@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param method Method for computing a fundamental matrix.
-   **RANSAC** for the RANSAC algorithm.
-   **MEDS** for the LMedS algorithm.
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:

\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]

where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
 */
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
                                 InputArray cameraMatrix, int method = RANSAC,
                                 double prob = 0.999, double threshold = 1.0,
                                 OutputArray mask = noArray() );

/** @overload
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param focal focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.
@param pp principal point of the camera.
@param method Method for computing a fundamental matrix.
-   **RANSAC** for the RANSAC algorithm.
-   **LMEDS** for the LMedS algorithm.
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function differs from the one above that it computes camera matrix from focal length and
principal point:

\f[K =
\begin{bmatrix}
f & 0 & x_{pp}  \\
0 & f & y_{pp}  \\
0 & 0 & 1
\end{bmatrix}\f]
 */
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
                                 double focal = 1.0, Point2d pp = Point2d(0, 0),
                                 int method = RANSAC, double prob = 0.999,
                                 double threshold = 1.0, OutputArray mask = noArray() );

/** @brief Decompose an essential matrix to possible rotations and translation.

@param E The input essential matrix.
@param R1 One possible rotation matrix.
@param R2 Another possible rotation matrix.
@param t One possible translation.

This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
decomposing E, you can only get the direction of the translation, so the function returns unit t.
 */
CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );

/** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
corresponding points in two images, using cheirality check. Returns the number of inliers which pass
the check.

@param E The input essential matrix.
@param points1 Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix.
@param R Recovered relative rotation.
@param t Recoverd relative translation.
@param mask Input/output mask for inliers in points1 and points2.
:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
which pass the cheirality check.
This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
pose hypotheses by doing cheirality check. The cheirality check basically means that the
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .

This function can be used to process output E and mask from findEssentialMat. In this scenario,
points1 and points2 are the same input for findEssentialMat. :
@code
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
    int point_count = 100;
    vector<Point2f> points1(point_count);
    vector<Point2f> points2(point_count);

    // initialize the points here ...
    for( int i = 0; i < point_count; i++ )
    {
        points1[i] = ...;
        points2[i] = ...;
    }

    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);

    Mat E, R, t, mask;

    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
@endcode
 */
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
                            InputArray cameraMatrix, OutputArray R, OutputArray t,
                            InputOutputArray mask = noArray() );

/** @overload
@param E The input essential matrix.
@param points1 Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).
@param points2 Array of the second image points of the same size and format as points1 .
@param R Recovered relative rotation.
@param t Recoverd relative translation.
@param focal Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.
@param pp principal point of the camera.
@param mask Input/output mask for inliers in points1 and points2.
:   If it is not empty, then it marks inliers in points1 and points2 for then given essential
matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
which pass the cheirality check.

This function differs from the one above that it computes camera matrix from focal length and
principal point:

\f[K =
\begin{bmatrix}
f & 0 & x_{pp}  \\
0 & f & y_{pp}  \\
0 & 0 & 1
\end{bmatrix}\f]
 */
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
                            OutputArray R, OutputArray t,
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
                            InputOutputArray mask = noArray() );

/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.

@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
vector\<Point2f\> .
@param whichImage Index of the image (1 or 2) that contains the points .
@param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
@param lines Output vector of the epipolar lines corresponding to the points in the other image.
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .

For every point in one of the two images of a stereo pair, the function finds the equation of the
corresponding epipolar line in the other image.

From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:

\f[l^{(2)}_i = F p^{(1)}_i\f]

And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:

\f[l^{(1)}_i = F^T p^{(2)}_i\f]

Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
 */
CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
                                             InputArray F, OutputArray lines );

/** @brief Reconstructs points by triangulation.

@param projMatr1 3x4 projection matrix of the first camera.
@param projMatr2 3x4 projection matrix of the second camera.
@param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
@param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
@param points4D 4xN array of reconstructed points in homogeneous coordinates.

The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
observations with a stereo camera. Projections matrices can be obtained from stereoRectify.

@note
   Keep in mind that all input data should be of float type in order for this function to work.

@sa
   reprojectImageTo3D
 */
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
                                     InputArray projPoints1, InputArray projPoints2,
                                     OutputArray points4D );

/** @brief Refines coordinates of corresponding points.

@param F 3x3 fundamental matrix.
@param points1 1xN array containing the first set of points.
@param points2 1xN array containing the second set of points.
@param newPoints1 The optimized points1.
@param newPoints2 The optimized points2.

The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
\f$newPoints2^T * F * newPoints1 = 0\f$ .
 */
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
                                  OutputArray newPoints1, OutputArray newPoints2 );

/** @brief Filters off small noise blobs (speckles) in the disparity map

@param img The input 16-bit signed disparity image
@param newVal The disparity value used to paint-off the speckles
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.
@param buf The optional temporary buffer to avoid memory allocation within the function.
 */
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
                                  int maxSpeckleSize, double maxDiff,
                                  InputOutputArray buf = noArray() );

//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
                                        int minDisparity, int numberOfDisparities,
                                        int SADWindowSize );

//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
                                     int minDisparity, int numberOfDisparities,
                                     int disp12MaxDisp = 1 );

/** @brief Reprojects a disparity image to 3D space.

@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.
@param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
map.
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
to 3D points with a very large Z value (currently set to 10000).
@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.

The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it
computes:

\f[\begin{array}{l} [X \; Y \; Z \; W]^T =  \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T  \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]

The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
perspectiveTransform .
 */
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
                                      OutputArray _3dImage, InputArray Q,
                                      bool handleMissingValues = false,
                                      int ddepth = -1 );

/** @brief Calculates the Sampson Distance between two points.

The function sampsonDistance calculates and returns the first order approximation of the geometric error as:
\f[sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}{(\texttt{F} \cdot \texttt{pt1})(0) + (\texttt{F} \cdot \texttt{pt1})(1) + (\texttt{F}^t \cdot \texttt{pt2})(0) + (\texttt{F}^t \cdot \texttt{pt2})(1)}\f]
The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details.
@param pt1 first homogeneous 2d point
@param pt2 second homogeneous 2d point
@param F fundamental matrix
*/
CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);

/** @brief Computes an optimal affine transformation between two 3D point sets.

@param src First input 3D point set.
@param dst Second input 3D point set.
@param out Output 3D affine transformation matrix \f$3 \times 4\f$ .
@param inliers Output vector indicating which points are inliers.
@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

The function estimates an optimal 3D affine transformation between two 3D point sets using the
RANSAC algorithm.
 */
CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
                                   OutputArray out, OutputArray inliers,
                                   double ransacThreshold = 3, double confidence = 0.99);

/** @brief Computes an optimal affine transformation between two 2D point sets.

@param from First input 2D point set.
@param to Second input 2D point set.
@param inliers Output vector indicating which points are inliers.
@param method Robust method used to compute tranformation. The following methods are possible:
-   cv::RANSAC - RANSAC-based robust method
-   cv::LMEDS - Least-Median robust method
RANSAC is the default method.
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
could not be estimated.

The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.

The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.

@note
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.

@sa estimateAffinePartial2D, getAffineTransform
*/
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
                                  int method = RANSAC, double ransacReprojThreshold = 3,
                                  size_t maxIters = 2000, double confidence = 0.99,
                                  size_t refineIters = 10);

/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.

@param from First input 2D point set.
@param to Second input 2D point set.
@param inliers Output vector indicating which points are inliers.
@param method Robust method used to compute tranformation. The following methods are possible:
-   cv::RANSAC - RANSAC-based robust method
-   cv::LMEDS - Least-Median robust method
RANSAC is the default method.
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be.
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
empty matrix if transformation could not be estimated.

The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.

The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.

Estimated transformation matrix is:
\f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\
                \sin(\theta)s & \cos(\theta)s & ty
\end{bmatrix} \f]
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are
translations in \f$ x, y \f$ axes respectively.

@note
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.

@sa estimateAffine2D, getAffineTransform
*/
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
                                  int method = RANSAC, double ransacReprojThreshold = 3,
                                  size_t maxIters = 2000, double confidence = 0.99,
                                  size_t refineIters = 10);

/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).

@param H The input homography matrix between two images.
@param K The input intrinsic camera calibration matrix.
@param rotations Array of rotation matrices.
@param translations Array of translation matrices.
@param normals Array of plane normal matrices.

This function extracts relative camera motion between two views observing a planar object from the
homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
may return up to four mathematical solution sets. At least two of the solutions may further be
invalidated if point correspondences are available by applying positive depth constraint (all points
must be in front of the camera). The decomposition method is described in detail in @cite Malis .
 */
CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
                                        InputArray K,
                                        OutputArrayOfArrays rotations,
                                        OutputArrayOfArrays translations,
                                        OutputArrayOfArrays normals);

/** @brief The base class for stereo correspondence algorithms.
 */
class CV_EXPORTS_W StereoMatcher : public Algorithm
{
public:
    enum { DISP_SHIFT = 4,
           DISP_SCALE = (1 << DISP_SHIFT)
         };

    /** @brief Computes disparity map for the specified stereo pair

    @param left Left 8-bit single-channel image.
    @param right Right image of the same size and the same type as the left one.
    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
     */
    CV_WRAP virtual void compute( InputArray left, InputArray right,
                                  OutputArray disparity ) = 0;

    CV_WRAP virtual int getMinDisparity() const = 0;
    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;

    CV_WRAP virtual int getNumDisparities() const = 0;
    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;

    CV_WRAP virtual int getBlockSize() const = 0;
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;

    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;

    CV_WRAP virtual int getSpeckleRange() const = 0;
    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;

    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
};


/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
contributed to OpenCV by K. Konolige.
 */
class CV_EXPORTS_W StereoBM : public StereoMatcher
{
public:
    enum { PREFILTER_NORMALIZED_RESPONSE = 0,
           PREFILTER_XSOBEL              = 1
         };

    CV_WRAP virtual int getPreFilterType() const = 0;
    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;

    CV_WRAP virtual int getPreFilterSize() const = 0;
    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;

    CV_WRAP virtual int getPreFilterCap() const = 0;
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;

    CV_WRAP virtual int getTextureThreshold() const = 0;
    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;

    CV_WRAP virtual int getUniquenessRatio() const = 0;
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;

    CV_WRAP virtual int getSmallerBlockSize() const = 0;
    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;

    CV_WRAP virtual Rect getROI1() const = 0;
    CV_WRAP virtual void setROI1(Rect roi1) = 0;

    CV_WRAP virtual Rect getROI2() const = 0;
    CV_WRAP virtual void setROI2(Rect roi2) = 0;

    /** @brief Creates StereoBM object

    @param numDisparities the disparity search range. For each pixel algorithm will find the best
    disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
    shifted by changing the minimum disparity.
    @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
    (as the block is centered at the current pixel). Larger block size implies smoother, though less
    accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
    chance for algorithm to find a wrong correspondence.

    The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
    a specific stereo pair.
     */
    CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
};

/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
one as follows:

-   By default, the algorithm is single-pass, which means that you consider only 5 directions
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
algorithm but beware that it may consume a lot of memory.
-   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
blocks to single pixels.
-   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
-   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
check, quadratic interpolation and speckle filtering).

@note
   -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
        at opencv_source_code/samples/python/stereo_match.py
 */
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
{
public:
    enum
    {
        MODE_SGBM = 0,
        MODE_HH   = 1,
        MODE_SGBM_3WAY = 2
    };

    CV_WRAP virtual int getPreFilterCap() const = 0;
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;

    CV_WRAP virtual int getUniquenessRatio() const = 0;
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;

    CV_WRAP virtual int getP1() const = 0;
    CV_WRAP virtual void setP1(int P1) = 0;

    CV_WRAP virtual int getP2() const = 0;
    CV_WRAP virtual void setP2(int P2) = 0;

    CV_WRAP virtual int getMode() const = 0;
    CV_WRAP virtual void setMode(int mode) = 0;

    /** @brief Creates StereoSGBM object

    @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
    rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
    @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
    zero. In the current implementation, this parameter must be divisible by 16.
    @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
    somewhere in the 3..11 range.
    @param P1 The first parameter controlling the disparity smoothness. See below.
    @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
    the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
    between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
    pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
    P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
    32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
    @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
    disparity check. Set it to a non-positive value to disable the check.
    @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
    computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
    The result values are passed to the Birchfield-Tomasi pixel cost function.
    @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
    value should "win" the second best value to consider the found match correct. Normally, a value
    within the 5-15 range is good enough.
    @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
    and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
    50-200 range.
    @param speckleRange Maximum disparity variation within each connected component. If you do speckle
    filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
    Normally, 1 or 2 is good enough.
    @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
    algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
    huge for HD-size pictures. By default, it is set to false .

    The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
    set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
    to a custom value.
     */
    CV_WRAP static Ptr<StereoSGBM> create(int minDisparity, int numDisparities, int blockSize,
                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
                                          int preFilterCap = 0, int uniquenessRatio = 0,
                                          int speckleWindowSize = 0, int speckleRange = 0,
                                          int mode = StereoSGBM::MODE_SGBM);
};

//! @} calib3d

/** @brief The methods in this namespace use a so-called fisheye camera model.
  @ingroup calib3d_fisheye
*/
namespace fisheye
{
//! @addtogroup calib3d_fisheye
//! @{

    enum{
        CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
        CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
        CALIB_CHECK_COND            = 1 << 2,
        CALIB_FIX_SKEW              = 1 << 3,
        CALIB_FIX_K1                = 1 << 4,
        CALIB_FIX_K2                = 1 << 5,
        CALIB_FIX_K3                = 1 << 6,
        CALIB_FIX_K4                = 1 << 7,
        CALIB_FIX_INTRINSIC         = 1 << 8,
        CALIB_FIX_PRINCIPAL_POINT   = 1 << 9
    };

    /** @brief Projects points using fisheye model

    @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
    the number of points in the view.
    @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
    vector\<Point2f\>.
    @param affine
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param alpha The skew coefficient.
    @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
    to components of the focal lengths, coordinates of the principal point, distortion coefficients,
    rotation vector, translation vector, and the skew. In the old interface different components of
    the jacobian are returned via different output parameters.

    The function computes projections of 3D points to the image plane given intrinsic and extrinsic
    camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
    image points coordinates (as functions of all the input parameters) with respect to the particular
    parameters, intrinsic and/or extrinsic.
     */
    CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());

    /** @overload */
    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());

    /** @brief Distorts 2D points using fisheye model.

    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
    the number of points in the view.
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param alpha The skew coefficient.
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .

    Note that the function assumes the camera matrix of the undistorted points to be indentity.
    This means if you want to transform back points undistorted with undistortPoints() you have to
    multiply them with \f$P^{-1}\f$.
     */
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);

    /** @brief Undistorts 2D points using fisheye model

    @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
    number of points in the view.
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
    1-channel or 1x1 3-channel
    @param P New camera matrix (3x3) or new projection matrix (3x4)
    @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
     */
    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
        InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray());

    /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
    distortion is used, if R or P is empty identity matrixes are used.

    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
    1-channel or 1x1 3-channel
    @param P New camera matrix (3x3) or new projection matrix (3x4)
    @param size Undistorted image size.
    @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
    for details.
    @param map1 The first output map.
    @param map2 The second output map.
     */
    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);

    /** @brief Transforms an image to compensate for fisheye lens distortion.

    @param distorted image with fisheye lens distortion.
    @param undistorted Output image with compensated fisheye lens distortion.
    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
    may additionally scale and shift the result by using a different matrix.
    @param new_size

    The function transforms an image to compensate radial and tangential lens distortion.

    The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
    (with bilinear interpolation). See the former function for details of the transformation being
    performed.

    See below the results of undistortImage.
       -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
            k_4, k_5, k_6) of distortion were optimized under calibration)
        -   b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
            k_3, k_4) of fisheye distortion were optimized under calibration)
        -   c\) original image was captured with fisheye lens

    Pictures a) and b) almost the same. But if we consider points of image located far from the center
    of image, we can notice that on image a) these points are distorted.

    ![image](pics/fisheye_undistorted.jpg)
     */
    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
        InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());

    /** @brief Estimates new camera matrix for undistortion or rectification.

    @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
    @param image_size
    @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
    1-channel or 1x1 3-channel
    @param P New camera matrix (3x3) or new projection matrix (3x4)
    @param balance Sets the new focal length in range between the min focal length and the max focal
    length. Balance is in range of [0, 1].
    @param new_size
    @param fov_scale Divisor for new focal length.
     */
    CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
        OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);

    /** @brief Performs camera calibaration

    @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
    coordinate space.
    @param imagePoints vector of vectors of the projections of calibration pattern points.
    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
    objectPoints[i].size() for each i.
    @param image_size Size of the image used only to initialize the intrinsic camera matrix.
    @param K Output 3x3 floating-point camera matrix
    \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
    fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
    initialized before calling the function.
    @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
    @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
    the next output parameter description) brings the calibration pattern from the model coordinate
    space (in which object points are specified) to the world coordinate space, that is, a real
    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
    @param tvecs Output vector of translation vectors estimated for each pattern view.
    @param flags Different flags that may be zero or a combination of the following values:
    -   **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
    -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
    of intrinsic optimization.
    -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
    -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
    -   **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
    are set to zeros and stay zero.
    -   **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
    @param criteria Termination criteria for the iterative optimization algorithm.
     */
    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
        InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));

    /** @brief Stereo rectification for fisheye camera model

    @param K1 First camera matrix.
    @param D1 First camera distortion parameters.
    @param K2 Second camera matrix.
    @param D2 Second camera distortion parameters.
    @param imageSize Size of the image used for stereo calibration.
    @param R Rotation matrix between the coordinate systems of the first and the second
    cameras.
    @param tvec Translation vector between coordinate systems of the cameras.
    @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
    @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
    @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
    camera.
    @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
    camera.
    @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
    @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
    the function makes the principal points of each camera have the same pixel coordinates in the
    rectified views. And if the flag is not set, the function may still shift the images in the
    horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
    useful image area.
    @param newImageSize New image resolution after rectification. The same size should be passed to
    initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
    is passed (default), it is set to the original imageSize . Setting it to larger value can help you
    preserve details in the original image, especially when there is a big radial distortion.
    @param balance Sets the new focal length in range between the min focal length and the max focal
    length. Balance is in range of [0, 1].
    @param fov_scale Divisor for new focal length.
     */
    CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
        OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
        double balance = 0.0, double fov_scale = 1.0);

    /** @brief Performs stereo calibration

    @param objectPoints Vector of vectors of the calibration pattern points.
    @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
    observed by the first camera.
    @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
    observed by the second camera.
    @param K1 Input/output first camera matrix:
    \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
    any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified,
    some or all of the matrix components must be initialized.
    @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
    @param K2 Input/output second camera matrix. The parameter is similar to K1 .
    @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
    similar to D1 .
    @param imageSize Size of the image used only to initialize intrinsic camera matrix.
    @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
    @param T Output translation vector between the coordinate systems of the cameras.
    @param flags Different flags that may be zero or a combination of the following values:
    -   **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
    are estimated.
    -   **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
    center (imageSize is used), and focal distances are computed in a least-squares fashion.
    -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
    of intrinsic optimization.
    -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
    -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
    -   **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
    zero.
    @param criteria Termination criteria for the iterative optimization algorithm.
     */
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
                                  OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));

//! @} calib3d_fisheye
}

} // cv

#ifndef DISABLE_OPENCV_24_COMPATIBILITY
#include "opencv2/calib3d/calib3d_c.h"
#endif

#endif