summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/xfeatures2d.hpp
blob: 1185de033e62885568f4be23787af587b9467f58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.

                          License Agreement
               For Open Source Computer Vision Library
                       (3-clause BSD License)

Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

  * Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

  * Neither the names of the copyright holders nor the names of the contributors
    may be used to endorse or promote products derived from this software
    without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/

#ifndef __OPENCV_XFEATURES2D_HPP__
#define __OPENCV_XFEATURES2D_HPP__

#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"

/** @defgroup xfeatures2d Extra 2D Features Framework
@{
    @defgroup xfeatures2d_experiment Experimental 2D Features Algorithms

This section describes experimental algorithms for 2d feature detection.

    @defgroup xfeatures2d_nonfree Non-free 2D Features Algorithms

This section describes two popular algorithms for 2d feature detection, SIFT and SURF, that are
known to be patented. Use them at your own risk.

@}
*/

namespace cv
{
namespace xfeatures2d
{

//! @addtogroup xfeatures2d_experiment
//! @{

/** @brief Class implementing the FREAK (*Fast Retina Keypoint*) keypoint descriptor, described in @cite AOV12 .

The algorithm propose a novel keypoint descriptor inspired by the human visual system and more
precisely the retina, coined Fast Retina Key- point (FREAK). A cascade of binary strings is
computed by efficiently comparing image intensities over a retinal sampling pattern. FREAKs are in
general faster to compute with lower memory load and also more robust than SIFT, SURF or BRISK.
They are competitive alternatives to existing keypoints in particular for embedded applications.

@note
   -   An example on how to use the FREAK descriptor can be found at
        opencv_source_code/samples/cpp/freak_demo.cpp
 */
class CV_EXPORTS_W FREAK : public Feature2D
{
public:

    enum
    {
        NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
    };

    /**
    @param orientationNormalized Enable orientation normalization.
    @param scaleNormalized Enable scale normalization.
    @param patternScale Scaling of the description pattern.
    @param nOctaves Number of octaves covered by the detected keypoints.
    @param selectedPairs (Optional) user defined selected pairs indexes,
     */
    CV_WRAP static Ptr<FREAK> create(bool orientationNormalized = true,
                             bool scaleNormalized = true,
                             float patternScale = 22.0f,
                             int nOctaves = 4,
                             const std::vector<int>& selectedPairs = std::vector<int>());
};


/** @brief The class implements the keypoint detector introduced by @cite Agrawal08, synonym of StarDetector. :
 */
class CV_EXPORTS_W StarDetector : public Feature2D
{
public:
    //! the full constructor
    CV_WRAP static Ptr<StarDetector> create(int maxSize=45, int responseThreshold=30,
                         int lineThresholdProjected=10,
                         int lineThresholdBinarized=8,
                         int suppressNonmaxSize=5);
};

/*
 * BRIEF Descriptor
 */

/** @brief Class for computing BRIEF descriptors described in @cite calon2010 .

@param bytes legth of the descriptor in bytes, valid values are: 16, 32 (default) or 64 .
@param use_orientation sample patterns using keypoints orientation, disabled by default.

 */
class CV_EXPORTS_W BriefDescriptorExtractor : public Feature2D
{
public:
    CV_WRAP static Ptr<BriefDescriptorExtractor> create( int bytes = 32, bool use_orientation = false );
};

/** @brief Class implementing the locally uniform comparison image descriptor, described in @cite LUCID

An image descriptor that can be computed very fast, while being
about as robust as, for example, SURF or BRIEF.

@note It requires a color image as input.
 */
class CV_EXPORTS_W LUCID : public Feature2D
{
public:
    /**
     * @param lucid_kernel kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
     * @param blur_kernel kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
     */
    CV_WRAP static Ptr<LUCID> create(const int lucid_kernel = 1, const int blur_kernel = 2);
};


/*
* LATCH Descriptor
*/

/** latch Class for computing the LATCH descriptor.
If you find this code useful, please add a reference to the following paper in your work:
Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015

LATCH is a binary descriptor based on learned comparisons of triplets of image patches.

* bytes is the size of the descriptor - can be 64, 32, 16, 8, 4, 2 or 1
* rotationInvariance - whether or not the descriptor should compansate for orientation changes.
* half_ssd_size - the size of half of the mini-patches size. For example, if we would like to compare triplets of patches of size 7x7x
    then the half_ssd_size should be (7-1)/2 = 3.

Note: the descriptor can be coupled with any keypoint extractor. The only demand is that if you use set rotationInvariance = True then
    you will have to use an extractor which estimates the patch orientation (in degrees). Examples for such extractors are ORB and SIFT.

Note: a complete example can be found under /samples/cpp/tutorial_code/xfeatures2D/latch_match.cpp

*/
class CV_EXPORTS_W LATCH : public Feature2D
{
public:
    CV_WRAP static Ptr<LATCH> create(int bytes = 32, bool rotationInvariance = true, int half_ssd_size=3);
};

/** @brief Class implementing DAISY descriptor, described in @cite Tola10

@param radius radius of the descriptor at the initial scale
@param q_radius amount of radial range division quantity
@param q_theta amount of angular range division quantity
@param q_hist amount of gradient orientations range division quantity
@param norm choose descriptors normalization type, where
DAISY::NRM_NONE will not do any normalization (default),
DAISY::NRM_PARTIAL mean that histograms are normalized independently for L2 norm equal to 1.0,
DAISY::NRM_FULL mean that descriptors are normalized for L2 norm equal to 1.0,
DAISY::NRM_SIFT mean that descriptors are normalized for L2 norm equal to 1.0 but no individual one is bigger than 0.154 as in SIFT
@param H optional 3x3 homography matrix used to warp the grid of daisy but sampling keypoints remains unwarped on image
@param interpolation switch to disable interpolation for speed improvement at minor quality loss
@param use_orientation sample patterns using keypoints orientation, disabled by default.

 */
class CV_EXPORTS_W DAISY : public Feature2D
{
public:
    enum
    {
        NRM_NONE = 100, NRM_PARTIAL = 101, NRM_FULL = 102, NRM_SIFT = 103,
    };
    CV_WRAP static Ptr<DAISY> create( float radius = 15, int q_radius = 3, int q_theta = 8,
                int q_hist = 8, int norm = DAISY::NRM_NONE, InputArray H = noArray(),
                bool interpolation = true, bool use_orientation = false );

    /** @overload
     * @param image image to extract descriptors
     * @param keypoints of interest within image
     * @param descriptors resulted descriptors array
     */
    virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) = 0;

    virtual void compute( InputArrayOfArrays images,
                          std::vector<std::vector<KeyPoint> >& keypoints,
                          OutputArrayOfArrays descriptors );

    /** @overload
     * @param image image to extract descriptors
     * @param roi region of interest within image
     * @param descriptors resulted descriptors array for roi image pixels
     */
    virtual void compute( InputArray image, Rect roi, OutputArray descriptors ) = 0;

    /**@overload
     * @param image image to extract descriptors
     * @param descriptors resulted descriptors array for all image pixels
     */
    virtual void compute( InputArray image, OutputArray descriptors ) = 0;

    /**
     * @param y position y on image
     * @param x position x on image
     * @param orientation orientation on image (0->360)
     * @param descriptor supplied array for descriptor storage
     */
    virtual void GetDescriptor( double y, double x, int orientation, float* descriptor ) const = 0;

    /**
     * @param y position y on image
     * @param x position x on image
     * @param orientation orientation on image (0->360)
     * @param descriptor supplied array for descriptor storage
     * @param H homography matrix for warped grid
     */
    virtual bool GetDescriptor( double y, double x, int orientation, float* descriptor, double* H ) const = 0;

    /**
     * @param y position y on image
     * @param x position x on image
     * @param orientation orientation on image (0->360)
     * @param descriptor supplied array for descriptor storage
     */
    virtual void GetUnnormalizedDescriptor( double y, double x, int orientation, float* descriptor ) const = 0;

    /**
     * @param y position y on image
     * @param x position x on image
     * @param orientation orientation on image (0->360)
     * @param descriptor supplied array for descriptor storage
     * @param H homography matrix for warped grid
     */
    virtual bool GetUnnormalizedDescriptor( double y, double x, int orientation, float* descriptor , double *H ) const = 0;

};

/** @brief Class implementing the MSD (*Maximal Self-Dissimilarity*) keypoint detector, described in @cite Tombari14.

The algorithm implements a novel interest point detector stemming from the intuition that image patches
which are highly dissimilar over a relatively large extent of their surroundings hold the property of
being repeatable and distinctive. This concept of "contextual self-dissimilarity" reverses the key
paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local
Means filter, which build upon the presence of similar - rather than dissimilar - patches. Moreover,
it extends to contextual information the local self-dissimilarity notion embedded in established
detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and
localization accuracy.

*/

class CV_EXPORTS_W MSDDetector : public Feature2D {

public:

    static Ptr<MSDDetector> create(int m_patch_radius = 3, int m_search_area_radius = 5,
            int m_nms_radius = 5, int m_nms_scale_radius = 0, float m_th_saliency = 250.0f, int m_kNN = 4,
            float m_scale_factor = 1.25f, int m_n_scales = -1, bool m_compute_orientation = false);
};

/** @brief Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end
using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in @cite Simonyan14.

@param desc type of descriptor to use, VGG::VGG_120 is default (120 dimensions float)
Available types are VGG::VGG_120, VGG::VGG_80, VGG::VGG_64, VGG::VGG_48
@param isigma gaussian kernel value for image blur (default is 1.4f)
@param img_normalize use image sample intensity normalization (enabled by default)
@param use_orientation sample patterns using keypoints orientation, enabled by default
@param scale_factor adjust the sampling window of detected keypoints to 64.0f (VGG sampling window)
6.25f is default and fits for KAZE, SURF detected keypoints window ratio
6.75f should be the scale for SIFT detected keypoints window ratio
5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio
0.75f should be the scale for ORB keypoints ratio

@param dsc_normalize clamp descriptors to 255 and convert to uchar CV_8UC1 (disabled by default)

 */
class CV_EXPORTS_W VGG : public Feature2D
{
public:

    CV_WRAP enum
    {
        VGG_120 = 100, VGG_80 = 101, VGG_64 = 102, VGG_48 = 103,
    };

    CV_WRAP static Ptr<VGG> create( int desc = VGG::VGG_120, float isigma = 1.4f,
                                    bool img_normalize = true, bool use_scale_orientation = true,
                                    float scale_factor = 6.25f, bool dsc_normalize = false );
    /**
     * @param image image to extract descriptors
     * @param keypoints of interest within image
     * @param descriptors resulted descriptors array
     */
    CV_WRAP virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) = 0;

};

/** @brief Class implementing BoostDesc (Learning Image Descriptors with Boosting), described in
@cite Trzcinski13a and @cite Trzcinski13b.

@param desc type of descriptor to use, BoostDesc::BINBOOST_256 is default (256 bit long dimension)
Available types are: BoostDesc::BGM, BoostDesc::BGM_HARD, BoostDesc::BGM_BILINEAR, BoostDesc::LBGM,
BoostDesc::BINBOOST_64, BoostDesc::BINBOOST_128, BoostDesc::BINBOOST_256
@param use_orientation sample patterns using keypoints orientation, enabled by default
@param scale_factor adjust the sampling window of detected keypoints
6.25f is default and fits for KAZE, SURF detected keypoints window ratio
6.75f should be the scale for SIFT detected keypoints window ratio
5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio
0.75f should be the scale for ORB keypoints ratio
1.50f was the default in original implementation

@note BGM is the base descriptor where each binary dimension is computed as the output of a single weak learner.
BGM_HARD and BGM_BILINEAR refers to same BGM but use different type of gradient binning. In the BGM_HARD that
use ASSIGN_HARD binning type the gradient is assigned to the nearest orientation bin. In the BGM_BILINEAR that use
ASSIGN_BILINEAR binning type the gradient is assigned to the two neighbouring bins. In the BGM and all other modes that use
ASSIGN_SOFT binning type the gradient is assigned to 8 nearest bins according to the cosine value between the gradient
angle and the bin center. LBGM (alias FP-Boost) is the floating point extension where each dimension is computed
as a linear combination of the weak learner responses. BINBOOST and subvariants are the binary extensions of LBGM
where each bit is computed as a thresholded linear combination of a set of weak learners.
BoostDesc header files (boostdesc_*.i) was exported from original binaries with export-boostdesc.py script from
samples subfolder.

*/

class CV_EXPORTS_W BoostDesc : public Feature2D
{
public:

    CV_WRAP enum
    {
       BGM = 100, BGM_HARD = 101, BGM_BILINEAR = 102, LBGM = 200,
       BINBOOST_64 = 300, BINBOOST_128 = 301, BINBOOST_256 = 302
    };

    CV_WRAP static Ptr<BoostDesc> create( int desc = BoostDesc::BINBOOST_256,
                    bool use_scale_orientation = true, float scale_factor = 6.25f );
};


/*
* Position-Color-Texture signatures
*/

/**
* @brief Class implementing PCT (position-color-texture) signature extraction
*       as described in @cite KrulisLS16.
*       The algorithm is divided to a feature sampler and a clusterizer.
*       Feature sampler produces samples at given set of coordinates.
*       Clusterizer then produces clusters of these samples using k-means algorithm.
*       Resulting set of clusters is the signature of the input image.
*
*       A signature is an array of SIGNATURE_DIMENSION-dimensional points.
*       Used dimensions are:
*       weight, x, y position; lab color, contrast, entropy.
* @cite KrulisLS16
* @cite BeecksUS10
*/
class CV_EXPORTS_W PCTSignatures : public Algorithm
{
public:
    /**
    * @brief Lp distance function selector.
    */
    enum DistanceFunction
    {
        L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY
    };

    /**
    * @brief Point distributions supported by random point generator.
    */
    enum PointDistribution
    {
        UNIFORM,    //!< Generate numbers uniformly.
        REGULAR,    //!< Generate points in a regular grid.
        NORMAL      //!< Generate points with normal (gaussian) distribution.
    };

    /**
    * @brief Similarity function selector.
    * @see
    *       Christian Beecks, Merih Seran Uysal, Thomas Seidl.
    *       Signature quadratic form distance.
    *       In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 438-445.
    *       ACM, 2010.
    * @cite BeecksUS10
    * @note For selected distance function: \f[ d(c_i, c_j) \f]  and parameter: \f[ \alpha \f]
    */
    enum SimilarityFunction
    {
        MINUS,      //!< \f[ -d(c_i, c_j) \f]
        GAUSSIAN,   //!< \f[ e^{ -\alpha * d^2(c_i, c_j)} \f]
        HEURISTIC   //!< \f[ \frac{1}{\alpha + d(c_i, c_j)} \f]
    };


    /**
    * @brief Creates PCTSignatures algorithm using sample and seed count.
    *       It generates its own sets of sampling points and clusterization seed indexes.
    * @param initSampleCount Number of points used for image sampling.
    * @param initSeedCount Number of initial clusterization seeds.
    *       Must be lower or equal to initSampleCount
    * @param pointDistribution Distribution of generated points. Default: UNIFORM.
    *       Available: UNIFORM, REGULAR, NORMAL.
    * @return Created algorithm.
    */
    CV_WRAP static Ptr<PCTSignatures> create(
        const int initSampleCount = 2000,
        const int initSeedCount = 400,
        const int pointDistribution = 0);

    /**
    * @brief Creates PCTSignatures algorithm using pre-generated sampling points
    *       and number of clusterization seeds. It uses the provided
    *       sampling points and generates its own clusterization seed indexes.
    * @param initSamplingPoints Sampling points used in image sampling.
    * @param initSeedCount Number of initial clusterization seeds.
    *       Must be lower or equal to initSamplingPoints.size().
    * @return Created algorithm.
    */
    CV_WRAP static Ptr<PCTSignatures> create(
        const std::vector<Point2f>& initSamplingPoints,
        const int initSeedCount);

    /**
    * @brief Creates PCTSignatures algorithm using pre-generated sampling points
    *       and clusterization seeds indexes.
    * @param initSamplingPoints Sampling points used in image sampling.
    * @param initClusterSeedIndexes Indexes of initial clusterization seeds.
    *       Its size must be lower or equal to initSamplingPoints.size().
    * @return Created algorithm.
    */
    CV_WRAP static Ptr<PCTSignatures> create(
        const std::vector<Point2f>& initSamplingPoints,
        const std::vector<int>& initClusterSeedIndexes);



    /**
    * @brief Computes signature of given image.
    * @param image Input image of CV_8U type.
    * @param signature Output computed signature.
    */
    CV_WRAP virtual void computeSignature(
        InputArray image,
        OutputArray signature) const = 0;

    /**
    * @brief Computes signatures for multiple images in parallel.
    * @param images Vector of input images of CV_8U type.
    * @param signatures Vector of computed signatures.
    */
    CV_WRAP virtual void computeSignatures(
        const std::vector<Mat>& images,
        std::vector<Mat>& signatures) const = 0;

    /**
    * @brief Draws signature in the source image and outputs the result.
    *       Signatures are visualized as a circle
    *       with radius based on signature weight
    *       and color based on signature color.
    *       Contrast and entropy are not visualized.
    * @param source Source image.
    * @param signature Image signature.
    * @param result Output result.
    * @param radiusToShorterSideRatio Determines maximal radius of signature in the output image.
    * @param borderThickness Border thickness of the visualized signature.
    */
    CV_WRAP static void drawSignature(
        InputArray source,
        InputArray signature,
        OutputArray result,
        float radiusToShorterSideRatio = 1.0 / 8,
        int borderThickness = 1);

    /**
    * @brief Generates initial sampling points according to selected point distribution.
    * @param initPoints Output vector where the generated points will be saved.
    * @param count Number of points to generate.
    * @param pointDistribution Point distribution selector.
    *       Available: UNIFORM, REGULAR, NORMAL.
    * @note Generated coordinates are in range [0..1)
    */
    CV_WRAP static void generateInitPoints(
        std::vector<Point2f>& initPoints,
        const int count,
        int pointDistribution);


    /**** sampler ****/

    /**
    * @brief Number of initial samples taken from the image.
    */
    CV_WRAP virtual int getSampleCount() const = 0;

    /**
    * @brief Color resolution of the greyscale bitmap represented in allocated bits
    *       (i.e., value 4 means that 16 shades of grey are used).
    *       The greyscale bitmap is used for computing contrast and entropy values.
    */
    CV_WRAP virtual int getGrayscaleBits() const = 0;
    /**
    * @brief Color resolution of the greyscale bitmap represented in allocated bits
    *       (i.e., value 4 means that 16 shades of grey are used).
    *       The greyscale bitmap is used for computing contrast and entropy values.
    */
    CV_WRAP virtual void setGrayscaleBits(int grayscaleBits) = 0;

    /**
    * @brief Size of the texture sampling window used to compute contrast and entropy
    *       (center of the window is always in the pixel selected by x,y coordinates
    *       of the corresponding feature sample).
    */
    CV_WRAP virtual int getWindowRadius() const = 0;
    /**
    * @brief Size of the texture sampling window used to compute contrast and entropy
    *       (center of the window is always in the pixel selected by x,y coordinates
    *       of the corresponding feature sample).
    */
    CV_WRAP virtual void setWindowRadius(int radius) = 0;


    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual float getWeightX() const = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual void setWeightX(float weight) = 0;

    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual float getWeightY() const = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual void setWeightY(float weight) = 0;

    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual float getWeightL() const = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual void setWeightL(float weight) = 0;

    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual float getWeightA() const = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual void setWeightA(float weight) = 0;

    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual float getWeightB() const = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual void setWeightB(float weight) = 0;

    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual float getWeightConstrast() const = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual void setWeightContrast(float weight) = 0;

    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual float getWeightEntropy() const = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
    *       (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
    */
    CV_WRAP virtual void setWeightEntropy(float weight) = 0;

    /**
    * @brief Initial samples taken from the image.
    *       These sampled features become the input for clustering.
    */
    CV_WRAP virtual std::vector<Point2f> getSamplingPoints() const = 0;



    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
    * @param idx ID of the weight
    * @param value Value of the weight
    * @note
    *       WEIGHT_IDX = 0;
    *       X_IDX = 1;
    *       Y_IDX = 2;
    *       L_IDX = 3;
    *       A_IDX = 4;
    *       B_IDX = 5;
    *       CONTRAST_IDX = 6;
    *       ENTROPY_IDX = 7;
    */
    CV_WRAP virtual void setWeight(int idx, float value) = 0;
    /**
    * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
    * @param weights Values of all weights.
    * @note
    *       WEIGHT_IDX = 0;
    *       X_IDX = 1;
    *       Y_IDX = 2;
    *       L_IDX = 3;
    *       A_IDX = 4;
    *       B_IDX = 5;
    *       CONTRAST_IDX = 6;
    *       ENTROPY_IDX = 7;
    */
    CV_WRAP virtual void setWeights(const std::vector<float>& weights) = 0;

    /**
    * @brief Translations of the individual axes of the feature space.
    * @param idx ID of the translation
    * @param value Value of the translation
    * @note
    *       WEIGHT_IDX = 0;
    *       X_IDX = 1;
    *       Y_IDX = 2;
    *       L_IDX = 3;
    *       A_IDX = 4;
    *       B_IDX = 5;
    *       CONTRAST_IDX = 6;
    *       ENTROPY_IDX = 7;
    */
    CV_WRAP virtual void setTranslation(int idx, float value) = 0;
    /**
    * @brief Translations of the individual axes of the feature space.
    * @param translations Values of all translations.
    * @note
    *       WEIGHT_IDX = 0;
    *       X_IDX = 1;
    *       Y_IDX = 2;
    *       L_IDX = 3;
    *       A_IDX = 4;
    *       B_IDX = 5;
    *       CONTRAST_IDX = 6;
    *       ENTROPY_IDX = 7;
    */
    CV_WRAP virtual void setTranslations(const std::vector<float>& translations) = 0;

    /**
    * @brief Sets sampling points used to sample the input image.
    * @param samplingPoints Vector of sampling points in range [0..1)
    * @note Number of sampling points must be greater or equal to clusterization seed count.
    */
    CV_WRAP virtual void setSamplingPoints(std::vector<Point2f> samplingPoints) = 0;



    /**** clusterizer ****/
    /**
    * @brief Initial seeds (initial number of clusters) for the k-means algorithm.
    */
    CV_WRAP virtual std::vector<int> getInitSeedIndexes() const = 0;
    /**
    * @brief Initial seed indexes for the k-means algorithm.
    */
    CV_WRAP virtual void setInitSeedIndexes(std::vector<int> initSeedIndexes) = 0;
    /**
    * @brief Number of initial seeds (initial number of clusters) for the k-means algorithm.
    */
    CV_WRAP virtual int getInitSeedCount() const = 0;

    /**
    * @brief Number of iterations of the k-means clustering.
    *       We use fixed number of iterations, since the modified clustering is pruning clusters
    *       (not iteratively refining k clusters).
    */
    CV_WRAP virtual int getIterationCount() const = 0;
    /**
    * @brief Number of iterations of the k-means clustering.
    *       We use fixed number of iterations, since the modified clustering is pruning clusters
    *       (not iteratively refining k clusters).
    */
    CV_WRAP virtual void setIterationCount(int iterationCount) = 0;

    /**
    * @brief Maximal number of generated clusters. If the number is exceeded,
    *       the clusters are sorted by their weights and the smallest clusters are cropped.
    */
    CV_WRAP virtual int getMaxClustersCount() const = 0;
    /**
    * @brief Maximal number of generated clusters. If the number is exceeded,
    *       the clusters are sorted by their weights and the smallest clusters are cropped.
    */
    CV_WRAP virtual void setMaxClustersCount(int maxClustersCount) = 0;

    /**
    * @brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
    *       Clusters containing fewer points than specified by the limit have their centroid dismissed
    *       and points are reassigned.
    */
    CV_WRAP virtual int getClusterMinSize() const = 0;
    /**
    * @brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
    *       Clusters containing fewer points than specified by the limit have their centroid dismissed
    *       and points are reassigned.
    */
    CV_WRAP virtual void setClusterMinSize(int clusterMinSize) = 0;

    /**
    * @brief Threshold euclidean distance between two centroids.
    *       If two cluster centers are closer than this distance,
    *       one of the centroid is dismissed and points are reassigned.
    */
    CV_WRAP virtual float getJoiningDistance() const = 0;
    /**
    * @brief Threshold euclidean distance between two centroids.
    *       If two cluster centers are closer than this distance,
    *       one of the centroid is dismissed and points are reassigned.
    */
    CV_WRAP virtual void setJoiningDistance(float joiningDistance) = 0;

    /**
    * @brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
    */
    CV_WRAP virtual float getDropThreshold() const = 0;
    /**
    * @brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
    */
    CV_WRAP virtual void setDropThreshold(float dropThreshold) = 0;

    /**
    * @brief Distance function selector used for measuring distance between two points in k-means.
    */
    CV_WRAP virtual int getDistanceFunction() const = 0;
    /**
    * @brief Distance function selector used for measuring distance between two points in k-means.
    *       Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY.
    */
    CV_WRAP virtual void setDistanceFunction(int distanceFunction) = 0;

};

/**
* @brief Class implementing Signature Quadratic Form Distance (SQFD).
* @see Christian Beecks, Merih Seran Uysal, Thomas Seidl.
*   Signature quadratic form distance.
*   In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 438-445.
*   ACM, 2010.
* @cite BeecksUS10
*/
class CV_EXPORTS_W PCTSignaturesSQFD : public Algorithm
{
public:

    /**
    * @brief Creates the algorithm instance using selected distance function,
    *       similarity function and similarity function parameter.
    * @param distanceFunction Distance function selector. Default: L2
    *       Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY
    * @param similarityFunction Similarity function selector. Default: HEURISTIC
    *       Available: MINUS, GAUSSIAN, HEURISTIC
    * @param similarityParameter Parameter of the similarity function.
    */
    CV_WRAP static Ptr<PCTSignaturesSQFD> create(
        const int distanceFunction = 3,
        const int similarityFunction = 2,
        const float similarityParameter = 1.0f);

    /**
    * @brief Computes Signature Quadratic Form Distance of two signatures.
    * @param _signature0 The first signature.
    * @param _signature1 The second signature.
    */
    CV_WRAP virtual float computeQuadraticFormDistance(
        InputArray _signature0,
        InputArray _signature1) const = 0;

    /**
    * @brief Computes Signature Quadratic Form Distance between the reference signature
    *       and each of the other image signatures.
    * @param sourceSignature The signature to measure distance of other signatures from.
    * @param imageSignatures Vector of signatures to measure distance from the source signature.
    * @param distances Output vector of measured distances.
    */
    CV_WRAP virtual void computeQuadraticFormDistances(
        const Mat& sourceSignature,
        const std::vector<Mat>& imageSignatures,
        std::vector<float>& distances) const = 0;

};

//! @}

}
}

#endif