summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/stitching/detail/warpers.hpp
blob: 1515d762606ed17a00bd1272a3d98bec8d295bf4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
 /*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_STITCHING_WARPERS_HPP
#define OPENCV_STITCHING_WARPERS_HPP

#include "opencv2/core.hpp"
#include "opencv2/core/cuda.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/opencv_modules.hpp"

namespace cv {
namespace detail {

//! @addtogroup stitching_warp
//! @{

/** @brief Rotation-only model image warper interface.
 */
class CV_EXPORTS RotationWarper
{
public:
    virtual ~RotationWarper() {}

    /** @brief Projects the image point.

    @param pt Source point
    @param K Camera intrinsic parameters
    @param R Camera rotation matrix
    @return Projected point
     */
    virtual Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R) = 0;

    /** @brief Builds the projection maps according to the given camera data.

    @param src_size Source image size
    @param K Camera intrinsic parameters
    @param R Camera rotation matrix
    @param xmap Projection map for the x axis
    @param ymap Projection map for the y axis
    @return Projected image minimum bounding box
     */
    virtual Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) = 0;

    /** @brief Projects the image.

    @param src Source image
    @param K Camera intrinsic parameters
    @param R Camera rotation matrix
    @param interp_mode Interpolation mode
    @param border_mode Border extrapolation mode
    @param dst Projected image
    @return Project image top-left corner
     */
    virtual Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
                       OutputArray dst) = 0;

    /** @brief Projects the image backward.

    @param src Projected image
    @param K Camera intrinsic parameters
    @param R Camera rotation matrix
    @param interp_mode Interpolation mode
    @param border_mode Border extrapolation mode
    @param dst_size Backward-projected image size
    @param dst Backward-projected image
     */
    virtual void warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
                              Size dst_size, OutputArray dst) = 0;

    /**
    @param src_size Source image bounding box
    @param K Camera intrinsic parameters
    @param R Camera rotation matrix
    @return Projected image minimum bounding box
     */
    virtual Rect warpRoi(Size src_size, InputArray K, InputArray R) = 0;

    virtual float getScale() const { return 1.f; }
    virtual void setScale(float) {}
};

/** @brief Base class for warping logic implementation.
 */
struct CV_EXPORTS ProjectorBase
{
    void setCameraParams(InputArray K = Mat::eye(3, 3, CV_32F),
                         InputArray R = Mat::eye(3, 3, CV_32F),
                         InputArray T = Mat::zeros(3, 1, CV_32F));

    float scale;
    float k[9];
    float rinv[9];
    float r_kinv[9];
    float k_rinv[9];
    float t[3];
};

/** @brief Base class for rotation-based warper using a detail::ProjectorBase_ derived class.
 */
template <class P>
class CV_EXPORTS RotationWarperBase : public RotationWarper
{
public:
    Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R);

    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap);

    Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
               OutputArray dst);

    void warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
                      Size dst_size, OutputArray dst);

    Rect warpRoi(Size src_size, InputArray K, InputArray R);

    float getScale() const { return projector_.scale; }
    void setScale(float val) { projector_.scale = val; }

protected:

    // Detects ROI of the destination image. It's correct for any projection.
    virtual void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br);

    // Detects ROI of the destination image by walking over image border.
    // Correctness for any projection isn't guaranteed.
    void detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br);

    P projector_;
};


struct CV_EXPORTS PlaneProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};

/** @brief Warper that maps an image onto the z = 1 plane.
 */
class CV_EXPORTS PlaneWarper : public RotationWarperBase<PlaneProjector>
{
public:
    /** @brief Construct an instance of the plane warper class.

    @param scale Projected image scale multiplier
     */
    PlaneWarper(float scale = 1.f) { projector_.scale = scale; }

    Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R);
    Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R, InputArray T);

    virtual Rect buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray xmap, OutputArray ymap);
    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap);

    Point warp(InputArray src, InputArray K, InputArray R,
               int interp_mode, int border_mode, OutputArray dst);
    virtual Point warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode,
               OutputArray dst);

    Rect warpRoi(Size src_size, InputArray K, InputArray R);
    Rect warpRoi(Size src_size, InputArray K, InputArray R, InputArray T);

protected:
    void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br);
};


/** @brief Affine warper that uses rotations and translations

 Uses affine transformation in homogeneous coordinates to represent both rotation and
 translation in camera rotation matrix.
 */
class CV_EXPORTS AffineWarper : public PlaneWarper
{
public:
    /** @brief Construct an instance of the affine warper class.

    @param scale Projected image scale multiplier
     */
    AffineWarper(float scale = 1.f) : PlaneWarper(scale) {}

    Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R);
    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap);
    Point warp(InputArray src, InputArray K, InputArray R,
               int interp_mode, int border_mode, OutputArray dst);
    Rect warpRoi(Size src_size, InputArray K, InputArray R);

protected:
    /** @brief Extracts rotation and translation matrices from matrix H representing
        affine transformation in homogeneous coordinates
     */
    void getRTfromHomogeneous(InputArray H, Mat &R, Mat &T);
};


struct CV_EXPORTS SphericalProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


/** @brief Warper that maps an image onto the unit sphere located at the origin.

 Projects image onto unit sphere with origin at (0, 0, 0) and radius scale, measured in pixels.
 A 360° panorama would therefore have a resulting width of 2 * scale * PI pixels.
 Poles are located at (0, -1, 0) and (0, 1, 0) points.
*/
class CV_EXPORTS SphericalWarper : public RotationWarperBase<SphericalProjector>
{
public:
    /** @brief Construct an instance of the spherical warper class.

    @param scale Radius of the projected sphere, in pixels. An image spanning the
                 whole sphere will have a width of 2 * scale * PI pixels.
     */
    SphericalWarper(float scale) { projector_.scale = scale; }

    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap);
    Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst);
protected:
    void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br);
};


struct CV_EXPORTS CylindricalProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


/** @brief Warper that maps an image onto the x\*x + z\*z = 1 cylinder.
 */
class CV_EXPORTS CylindricalWarper : public RotationWarperBase<CylindricalProjector>
{
public:
    /** @brief Construct an instance of the cylindrical warper class.

    @param scale Projected image scale multiplier
     */
    CylindricalWarper(float scale) { projector_.scale = scale; }

    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap);
    Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst);
protected:
    void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
    {
        RotationWarperBase<CylindricalProjector>::detectResultRoiByBorder(src_size, dst_tl, dst_br);
    }
};


struct CV_EXPORTS FisheyeProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS FisheyeWarper : public RotationWarperBase<FisheyeProjector>
{
public:
    FisheyeWarper(float scale) { projector_.scale = scale; }
};


struct CV_EXPORTS StereographicProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS StereographicWarper : public RotationWarperBase<StereographicProjector>
{
public:
    StereographicWarper(float scale) { projector_.scale = scale; }
};


struct CV_EXPORTS CompressedRectilinearProjector : ProjectorBase
{
    float a, b;

    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS CompressedRectilinearWarper : public RotationWarperBase<CompressedRectilinearProjector>
{
public:
    CompressedRectilinearWarper(float scale, float A = 1, float B = 1)
    {
        projector_.a = A;
        projector_.b = B;
        projector_.scale = scale;
    }
};


struct CV_EXPORTS CompressedRectilinearPortraitProjector : ProjectorBase
{
    float a, b;

    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS CompressedRectilinearPortraitWarper : public RotationWarperBase<CompressedRectilinearPortraitProjector>
{
public:
   CompressedRectilinearPortraitWarper(float scale, float A = 1, float B = 1)
   {
       projector_.a = A;
       projector_.b = B;
       projector_.scale = scale;
   }
};


struct CV_EXPORTS PaniniProjector : ProjectorBase
{
    float a, b;

    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS PaniniWarper : public RotationWarperBase<PaniniProjector>
{
public:
   PaniniWarper(float scale, float A = 1, float B = 1)
   {
       projector_.a = A;
       projector_.b = B;
       projector_.scale = scale;
   }
};


struct CV_EXPORTS PaniniPortraitProjector : ProjectorBase
{
    float a, b;

    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS PaniniPortraitWarper : public RotationWarperBase<PaniniPortraitProjector>
{
public:
   PaniniPortraitWarper(float scale, float A = 1, float B = 1)
   {
       projector_.a = A;
       projector_.b = B;
       projector_.scale = scale;
   }

};


struct CV_EXPORTS MercatorProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS MercatorWarper : public RotationWarperBase<MercatorProjector>
{
public:
    MercatorWarper(float scale) { projector_.scale = scale; }
};


struct CV_EXPORTS TransverseMercatorProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS TransverseMercatorWarper : public RotationWarperBase<TransverseMercatorProjector>
{
public:
    TransverseMercatorWarper(float scale) { projector_.scale = scale; }
};


class CV_EXPORTS PlaneWarperGpu : public PlaneWarper
{
public:
    PlaneWarperGpu(float scale = 1.f) : PlaneWarper(scale) {}

    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
    {
        Rect result = buildMaps(src_size, K, R, d_xmap_, d_ymap_);
        d_xmap_.download(xmap);
        d_ymap_.download(ymap);
        return result;
    }

    Rect buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray xmap, OutputArray ymap)
    {
        Rect result = buildMaps(src_size, K, R, T, d_xmap_, d_ymap_);
        d_xmap_.download(xmap);
        d_ymap_.download(ymap);
        return result;
    }

    Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
               OutputArray dst)
    {
        d_src_.upload(src);
        Point result = warp(d_src_, K, R, interp_mode, border_mode, d_dst_);
        d_dst_.download(dst);
        return result;
    }

    Point warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode,
               OutputArray dst)
    {
        d_src_.upload(src);
        Point result = warp(d_src_, K, R, T, interp_mode, border_mode, d_dst_);
        d_dst_.download(dst);
        return result;
    }

    Rect buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap);

    Rect buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, cuda::GpuMat & xmap, cuda::GpuMat & ymap);

    Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode,
               cuda::GpuMat & dst);

    Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode,
               cuda::GpuMat & dst);

private:
    cuda::GpuMat d_xmap_, d_ymap_, d_src_, d_dst_;
};


class CV_EXPORTS SphericalWarperGpu : public SphericalWarper
{
public:
    SphericalWarperGpu(float scale) : SphericalWarper(scale) {}

    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
    {
        Rect result = buildMaps(src_size, K, R, d_xmap_, d_ymap_);
        d_xmap_.download(xmap);
        d_ymap_.download(ymap);
        return result;
    }

    Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
               OutputArray dst)
    {
        d_src_.upload(src);
        Point result = warp(d_src_, K, R, interp_mode, border_mode, d_dst_);
        d_dst_.download(dst);
        return result;
    }

    Rect buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap);

    Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode,
               cuda::GpuMat & dst);

private:
    cuda::GpuMat d_xmap_, d_ymap_, d_src_, d_dst_;
};


class CV_EXPORTS CylindricalWarperGpu : public CylindricalWarper
{
public:
    CylindricalWarperGpu(float scale) : CylindricalWarper(scale) {}

    Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
    {
        Rect result = buildMaps(src_size, K, R, d_xmap_, d_ymap_);
        d_xmap_.download(xmap);
        d_ymap_.download(ymap);
        return result;
    }

    Point warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
               OutputArray dst)
    {
        d_src_.upload(src);
        Point result = warp(d_src_, K, R, interp_mode, border_mode, d_dst_);
        d_dst_.download(dst);
        return result;
    }

    Rect buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap);

    Point warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode,
               cuda::GpuMat & dst);

private:
    cuda::GpuMat d_xmap_, d_ymap_, d_src_, d_dst_;
};


struct SphericalPortraitProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


// Projects image onto unit sphere with origin at (0, 0, 0).
// Poles are located NOT at (0, -1, 0) and (0, 1, 0) points, BUT at (1, 0, 0) and (-1, 0, 0) points.
class CV_EXPORTS SphericalPortraitWarper : public RotationWarperBase<SphericalPortraitProjector>
{
public:
    SphericalPortraitWarper(float scale) { projector_.scale = scale; }

protected:
    void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br);
};

struct CylindricalPortraitProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS CylindricalPortraitWarper : public RotationWarperBase<CylindricalPortraitProjector>
{
public:
    CylindricalPortraitWarper(float scale) { projector_.scale = scale; }

protected:
    void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
    {
        RotationWarperBase<CylindricalPortraitProjector>::detectResultRoiByBorder(src_size, dst_tl, dst_br);
    }
};

struct PlanePortraitProjector : ProjectorBase
{
    void mapForward(float x, float y, float &u, float &v);
    void mapBackward(float u, float v, float &x, float &y);
};


class CV_EXPORTS PlanePortraitWarper : public RotationWarperBase<PlanePortraitProjector>
{
public:
    PlanePortraitWarper(float scale) { projector_.scale = scale; }

protected:
    void detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
    {
        RotationWarperBase<PlanePortraitProjector>::detectResultRoiByBorder(src_size, dst_tl, dst_br);
    }
};

//! @} stitching_warp

} // namespace detail
} // namespace cv

#include "warpers_inl.hpp"

#endif // OPENCV_STITCHING_WARPERS_HPP