1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_STITCHING_SEAM_FINDERS_HPP
#define OPENCV_STITCHING_SEAM_FINDERS_HPP
#include <set>
#include "opencv2/core.hpp"
#include "opencv2/opencv_modules.hpp"
namespace cv {
namespace detail {
//! @addtogroup stitching_seam
//! @{
/** @brief Base class for a seam estimator.
*/
class CV_EXPORTS SeamFinder
{
public:
virtual ~SeamFinder() {}
/** @brief Estimates seams.
@param src Source images
@param corners Source image top-left corners
@param masks Source image masks to update
*/
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks) = 0;
};
/** @brief Stub seam estimator which does nothing.
*/
class CV_EXPORTS NoSeamFinder : public SeamFinder
{
public:
void find(const std::vector<UMat>&, const std::vector<Point>&, std::vector<UMat>&) {}
};
/** @brief Base class for all pairwise seam estimators.
*/
class CV_EXPORTS PairwiseSeamFinder : public SeamFinder
{
public:
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
protected:
void run();
/** @brief Resolves masks intersection of two specified images in the given ROI.
@param first First image index
@param second Second image index
@param roi Region of interest
*/
virtual void findInPair(size_t first, size_t second, Rect roi) = 0;
std::vector<UMat> images_;
std::vector<Size> sizes_;
std::vector<Point> corners_;
std::vector<UMat> masks_;
};
/** @brief Voronoi diagram-based seam estimator.
*/
class CV_EXPORTS VoronoiSeamFinder : public PairwiseSeamFinder
{
public:
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
virtual void find(const std::vector<Size> &size, const std::vector<Point> &corners,
std::vector<UMat> &masks);
private:
void findInPair(size_t first, size_t second, Rect roi);
};
class CV_EXPORTS DpSeamFinder : public SeamFinder
{
public:
enum CostFunction { COLOR, COLOR_GRAD };
DpSeamFinder(CostFunction costFunc = COLOR);
CostFunction costFunction() const { return costFunc_; }
void setCostFunction(CostFunction val) { costFunc_ = val; }
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
private:
enum ComponentState
{
FIRST = 1, SECOND = 2, INTERS = 4,
INTERS_FIRST = INTERS | FIRST,
INTERS_SECOND = INTERS | SECOND
};
class ImagePairLess
{
public:
ImagePairLess(const std::vector<Mat> &images, const std::vector<Point> &corners)
: src_(&images[0]), corners_(&corners[0]) {}
bool operator() (const std::pair<size_t, size_t> &l, const std::pair<size_t, size_t> &r) const
{
Point c1 = corners_[l.first] + Point(src_[l.first].cols / 2, src_[l.first].rows / 2);
Point c2 = corners_[l.second] + Point(src_[l.second].cols / 2, src_[l.second].rows / 2);
int d1 = (c1 - c2).dot(c1 - c2);
c1 = corners_[r.first] + Point(src_[r.first].cols / 2, src_[r.first].rows / 2);
c2 = corners_[r.second] + Point(src_[r.second].cols / 2, src_[r.second].rows / 2);
int d2 = (c1 - c2).dot(c1 - c2);
return d1 < d2;
}
private:
const Mat *src_;
const Point *corners_;
};
class ClosePoints
{
public:
ClosePoints(int minDist) : minDist_(minDist) {}
bool operator() (const Point &p1, const Point &p2) const
{
int dist2 = (p1.x-p2.x) * (p1.x-p2.x) + (p1.y-p2.y) * (p1.y-p2.y);
return dist2 < minDist_ * minDist_;
}
private:
int minDist_;
};
void process(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2);
void findComponents();
void findEdges();
void resolveConflicts(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2);
void computeGradients(const Mat &image1, const Mat &image2);
bool hasOnlyOneNeighbor(int comp);
bool closeToContour(int y, int x, const Mat_<uchar> &contourMask);
bool getSeamTips(int comp1, int comp2, Point &p1, Point &p2);
void computeCosts(
const Mat &image1, const Mat &image2, Point tl1, Point tl2,
int comp, Mat_<float> &costV, Mat_<float> &costH);
bool estimateSeam(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp,
Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal);
void updateLabelsUsingSeam(
int comp1, int comp2, const std::vector<Point> &seam, bool isHorizontalSeam);
CostFunction costFunc_;
// processing images pair data
Point unionTl_, unionBr_;
Size unionSize_;
Mat_<uchar> mask1_, mask2_;
Mat_<uchar> contour1mask_, contour2mask_;
Mat_<float> gradx1_, grady1_;
Mat_<float> gradx2_, grady2_;
// components data
int ncomps_;
Mat_<int> labels_;
std::vector<ComponentState> states_;
std::vector<Point> tls_, brs_;
std::vector<std::vector<Point> > contours_;
std::set<std::pair<int, int> > edges_;
};
/** @brief Base class for all minimum graph-cut-based seam estimators.
*/
class CV_EXPORTS GraphCutSeamFinderBase
{
public:
enum CostType { COST_COLOR, COST_COLOR_GRAD };
};
/** @brief Minimum graph cut-based seam estimator. See details in @cite V03 .
*/
class CV_EXPORTS GraphCutSeamFinder : public GraphCutSeamFinderBase, public SeamFinder
{
public:
GraphCutSeamFinder(int cost_type = COST_COLOR_GRAD, float terminal_cost = 10000.f,
float bad_region_penalty = 1000.f);
~GraphCutSeamFinder();
void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
private:
// To avoid GCGraph dependency
class Impl;
Ptr<PairwiseSeamFinder> impl_;
};
#ifdef HAVE_OPENCV_CUDALEGACY
class CV_EXPORTS GraphCutSeamFinderGpu : public GraphCutSeamFinderBase, public PairwiseSeamFinder
{
public:
GraphCutSeamFinderGpu(int cost_type = COST_COLOR_GRAD, float terminal_cost = 10000.f,
float bad_region_penalty = 1000.f)
: cost_type_(cost_type), terminal_cost_(terminal_cost),
bad_region_penalty_(bad_region_penalty) {}
void find(const std::vector<cv::UMat> &src, const std::vector<cv::Point> &corners,
std::vector<cv::UMat> &masks);
void findInPair(size_t first, size_t second, Rect roi);
private:
void setGraphWeightsColor(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &mask1, const cv::Mat &mask2,
cv::Mat &terminals, cv::Mat &leftT, cv::Mat &rightT, cv::Mat &top, cv::Mat &bottom);
void setGraphWeightsColorGrad(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &dx1, const cv::Mat &dx2,
const cv::Mat &dy1, const cv::Mat &dy2, const cv::Mat &mask1, const cv::Mat &mask2,
cv::Mat &terminals, cv::Mat &leftT, cv::Mat &rightT, cv::Mat &top, cv::Mat &bottom);
std::vector<Mat> dx_, dy_;
int cost_type_;
float terminal_cost_;
float bad_region_penalty_;
};
#endif
//! @}
} // namespace detail
} // namespace cv
#endif // OPENCV_STITCHING_SEAM_FINDERS_HPP
|