1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_IMGPROC_HPP
#define OPENCV_IMGPROC_HPP
#include "opencv2/core.hpp"
/**
@defgroup imgproc Image processing
@{
@defgroup imgproc_filter Image Filtering
Functions and classes described in this section are used to perform various linear or non-linear
filtering operations on 2D images (represented as Mat's). It means that for each pixel location
\f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to
compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
morphological operations, it is the minimum or maximum values, and so on. The computed response is
stored in the destination image at the same location \f$(x,y)\f$. It means that the output image
will be of the same size as the input image. Normally, the functions support multi-channel arrays,
in which case every channel is processed independently. Therefore, the output image will also have
the same number of channels as the input one.
Another common feature of the functions and classes described in this section is that, unlike
simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when
processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
of the image. You can let these pixels be the same as the left-most image pixels ("replicated
border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
For details, see cv::BorderTypes
@anchor filter_depths
### Depth combinations
Input depth (src.depth()) | Output depth (ddepth)
--------------------------|----------------------
CV_8U | -1/CV_16S/CV_32F/CV_64F
CV_16U/CV_16S | -1/CV_32F/CV_64F
CV_32F | -1/CV_32F/CV_64F
CV_64F | -1/CV_64F
@note when ddepth=-1, the output image will have the same depth as the source.
@defgroup imgproc_transform Geometric Image Transformations
The functions in this section perform various geometrical transformations of 2D images. They do not
change the image content but deform the pixel grid and map this deformed grid to the destination
image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the
functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
pixel value:
\f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f]
In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow
\texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping
\f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula.
The actual implementations of the geometrical transformations, from the most generic remap and to
the simplest and the fastest resize, need to solve two main problems with the above formula:
- Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both
of them may fall outside of the image. In this case, an extrapolation method needs to be used.
OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
addition, it provides the method BORDER_TRANSPARENT. This means that the corresponding pixels in
the destination image will not be modified at all.
- Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point
numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective
transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
nearest integer coordinates and the corresponding pixel can be used. This is called a
nearest-neighbor interpolation. However, a better result can be achieved by using more
sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) ,
where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
resize for details.
@defgroup imgproc_misc Miscellaneous Image Transformations
@defgroup imgproc_draw Drawing Functions
Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
for color images and brightness for grayscale images. For color images, the channel ordering is
normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
color using the Scalar constructor, it should look like:
\f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f]
If you are using your own image rendering and I/O functions, you can use any channel ordering. The
drawing functions process each channel independently and do not depend on the channel order or even
on the used color space. The whole image can be converted from BGR to RGB or to a different color
space using cvtColor .
If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
fractional bits is specified by the shift parameter and the real point coordinates are calculated as
\f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is
especially effective when rendering antialiased shapes.
@note The functions do not support alpha-transparency when the target image is 4-channel. In this
case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
image.
@defgroup imgproc_colormap ColorMaps in OpenCV
The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
sensitive to observing changes between colors, so you often need to recolor your grayscale images to
get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
computer vision application.
In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
code reads the path to an image from command line, applies a Jet colormap on it and shows the
result:
@code
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
#include <iostream>
using namespace std;
int main(int argc, const char *argv[])
{
// We need an input image. (can be grayscale or color)
if (argc < 2)
{
cerr << "We need an image to process here. Please run: colorMap [path_to_image]" << endl;
return -1;
}
Mat img_in = imread(argv[1]);
if(img_in.empty())
{
cerr << "Sample image (" << argv[1] << ") is empty. Please adjust your path, so it points to a valid input image!" << endl;
return -1;
}
// Holds the colormap version of the image:
Mat img_color;
// Apply the colormap:
applyColorMap(img_in, img_color, COLORMAP_JET);
// Show the result:
imshow("colorMap", img_color);
waitKey(0);
return 0;
}
@endcode
@see cv::ColormapTypes
@defgroup imgproc_subdiv2d Planar Subdivision
The Subdiv2D class described in this section is used to perform various planar subdivision on
a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
using the Delaunay’s algorithm, which corresponds to the dual graph of the Voronoi diagram.
In the figure below, the Delaunay’s triangulation is marked with black lines and the Voronoi
diagram with red lines.
![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png)
The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast
location of points on the plane, building special graphs (such as NNG,RNG), and so forth.
@defgroup imgproc_hist Histograms
@defgroup imgproc_shape Structural Analysis and Shape Descriptors
@defgroup imgproc_motion Motion Analysis and Object Tracking
@defgroup imgproc_feature Feature Detection
@defgroup imgproc_object Object Detection
@defgroup imgproc_c C API
@defgroup imgproc_hal Hardware Acceleration Layer
@{
@defgroup imgproc_hal_functions Functions
@defgroup imgproc_hal_interface Interface
@}
@}
*/
namespace cv
{
/** @addtogroup imgproc
@{
*/
//! @addtogroup imgproc_filter
//! @{
//! type of morphological operation
enum MorphTypes{
MORPH_ERODE = 0, //!< see cv::erode
MORPH_DILATE = 1, //!< see cv::dilate
MORPH_OPEN = 2, //!< an opening operation
//!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f]
MORPH_CLOSE = 3, //!< a closing operation
//!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f]
MORPH_GRADIENT = 4, //!< a morphological gradient
//!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f]
MORPH_TOPHAT = 5, //!< "top hat"
//!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f]
MORPH_BLACKHAT = 6, //!< "black hat"
//!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f]
MORPH_HITMISS = 7 //!< "hit or miss"
//!< .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
};
//! shape of the structuring element
enum MorphShapes {
MORPH_RECT = 0, //!< a rectangular structuring element: \f[E_{ij}=1\f]
MORPH_CROSS = 1, //!< a cross-shaped structuring element:
//!< \f[E_{ij} = \fork{1}{if i=\texttt{anchor.y} or j=\texttt{anchor.x}}{0}{otherwise}\f]
MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed
//!< into the rectangle Rect(0, 0, esize.width, 0.esize.height)
};
//! @} imgproc_filter
//! @addtogroup imgproc_transform
//! @{
//! interpolation algorithm
enum InterpolationFlags{
/** nearest neighbor interpolation */
INTER_NEAREST = 0,
/** bilinear interpolation */
INTER_LINEAR = 1,
/** bicubic interpolation */
INTER_CUBIC = 2,
/** resampling using pixel area relation. It may be a preferred method for image decimation, as
it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
method. */
INTER_AREA = 3,
/** Lanczos interpolation over 8x8 neighborhood */
INTER_LANCZOS4 = 4,
/** mask for interpolation codes */
INTER_MAX = 7,
/** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
source image, they are set to zero */
WARP_FILL_OUTLIERS = 8,
/** flag, inverse transformation
For example, @ref cv::linearPolar or @ref cv::logPolar transforms:
- flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$
- flag is set: \f$dst(x,y) = src( \rho , \phi )\f$
*/
WARP_INVERSE_MAP = 16
};
enum InterpolationMasks {
INTER_BITS = 5,
INTER_BITS2 = INTER_BITS * 2,
INTER_TAB_SIZE = 1 << INTER_BITS,
INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
};
//! @} imgproc_transform
//! @addtogroup imgproc_misc
//! @{
//! Distance types for Distance Transform and M-estimators
//! @see cv::distanceTransform, cv::fitLine
enum DistanceTypes {
DIST_USER = -1, //!< User defined distance
DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2|
DIST_L2 = 2, //!< the simple euclidean distance
DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|)
DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
};
//! Mask size for distance transform
enum DistanceTransformMasks {
DIST_MASK_3 = 3, //!< mask=3
DIST_MASK_5 = 5, //!< mask=5
DIST_MASK_PRECISE = 0 //!<
};
//! type of the threshold operation
//! ![threshold types](pics/threshold.png)
enum ThresholdTypes {
THRESH_BINARY = 0, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
THRESH_MASK = 7,
THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value
};
//! adaptive threshold algorithm
//! see cv::adaptiveThreshold
enum AdaptiveThresholdTypes {
/** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times
\texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */
ADAPTIVE_THRESH_MEAN_C = 0,
/** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian
window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
minus C . The default sigma (standard deviation) is used for the specified blockSize . See
cv::getGaussianKernel*/
ADAPTIVE_THRESH_GAUSSIAN_C = 1
};
//! cv::undistort mode
enum UndistortTypes {
PROJ_SPHERICAL_ORTHO = 0,
PROJ_SPHERICAL_EQRECT = 1
};
//! class of the pixel in GrabCut algorithm
enum GrabCutClasses {
GC_BGD = 0, //!< an obvious background pixels
GC_FGD = 1, //!< an obvious foreground (object) pixel
GC_PR_BGD = 2, //!< a possible background pixel
GC_PR_FGD = 3 //!< a possible foreground pixel
};
//! GrabCut algorithm flags
enum GrabCutModes {
/** The function initializes the state and the mask using the provided rectangle. After that it
runs iterCount iterations of the algorithm. */
GC_INIT_WITH_RECT = 0,
/** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
automatically initialized with GC_BGD .*/
GC_INIT_WITH_MASK = 1,
/** The value means that the algorithm should just resume. */
GC_EVAL = 2
};
//! distanceTransform algorithm flags
enum DistanceTransformLabelTypes {
/** each connected component of zeros in src (as well as all the non-zero pixels closest to the
connected component) will be assigned the same label */
DIST_LABEL_CCOMP = 0,
/** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */
DIST_LABEL_PIXEL = 1
};
//! floodfill algorithm flags
enum FloodFillFlags {
/** If set, the difference between the current pixel and seed pixel is considered. Otherwise,
the difference between neighbor pixels is considered (that is, the range is floating). */
FLOODFILL_FIXED_RANGE = 1 << 16,
/** If set, the function does not change the image ( newVal is ignored), and only fills the
mask with the value specified in bits 8-16 of flags as described above. This option only make
sense in function variants that have the mask parameter. */
FLOODFILL_MASK_ONLY = 1 << 17
};
//! @} imgproc_misc
//! @addtogroup imgproc_shape
//! @{
//! connected components algorithm output formats
enum ConnectedComponentsTypes {
CC_STAT_LEFT = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding
//!< box in the horizontal direction.
CC_STAT_TOP = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding
//!< box in the vertical direction.
CC_STAT_WIDTH = 2, //!< The horizontal size of the bounding box
CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box
CC_STAT_AREA = 4, //!< The total area (in pixels) of the connected component
CC_STAT_MAX = 5
};
//! connected components algorithm
enum ConnectedComponentsAlgorithmsTypes {
CCL_WU = 0, //!< SAUF algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity
CCL_DEFAULT = -1, //!< BBDT algortihm for 8-way connectivity, SAUF algorithm for 4-way connectivity
CCL_GRANA = 1 //!< BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity
};
//! mode of the contour retrieval algorithm
enum RetrievalModes {
/** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
all the contours. */
RETR_EXTERNAL = 0,
/** retrieves all of the contours without establishing any hierarchical relationships. */
RETR_LIST = 1,
/** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
level, there are external boundaries of the components. At the second level, there are
boundaries of the holes. If there is another contour inside a hole of a connected component, it
is still put at the top level. */
RETR_CCOMP = 2,
/** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
RETR_TREE = 3,
RETR_FLOODFILL = 4 //!<
};
//! the contour approximation algorithm
enum ContourApproximationModes {
/** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
(x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
max(abs(x1-x2),abs(y2-y1))==1. */
CHAIN_APPROX_NONE = 1,
/** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
For example, an up-right rectangular contour is encoded with 4 points. */
CHAIN_APPROX_SIMPLE = 2,
/** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
CHAIN_APPROX_TC89_L1 = 3,
/** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
CHAIN_APPROX_TC89_KCOS = 4
};
//! @} imgproc_shape
//! Variants of a Hough transform
enum HoughModes {
/** classical or standard Hough transform. Every line is represented by two floating-point
numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line,
and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must
be (the created sequence will be) of CV_32FC2 type */
HOUGH_STANDARD = 0,
/** probabilistic Hough transform (more efficient in case if the picture contains a few long
linear segments). It returns line segments rather than the whole line. Each segment is
represented by starting and ending points, and the matrix must be (the created sequence will
be) of the CV_32SC4 type. */
HOUGH_PROBABILISTIC = 1,
/** multi-scale variant of the classical Hough transform. The lines are encoded the same way as
HOUGH_STANDARD. */
HOUGH_MULTI_SCALE = 2,
HOUGH_GRADIENT = 3 //!< basically *21HT*, described in @cite Yuen90
};
//! Variants of Line Segment %Detector
//! @ingroup imgproc_feature
enum LineSegmentDetectorModes {
LSD_REFINE_NONE = 0, //!< No refinement applied
LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are
//!< refined through increase of precision, decrement in size, etc.
};
/** Histogram comparison methods
@ingroup imgproc_hist
*/
enum HistCompMethods {
/** Correlation
\f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
where
\f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f]
and \f$N\f$ is a total number of histogram bins. */
HISTCMP_CORREL = 0,
/** Chi-Square
\f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */
HISTCMP_CHISQR = 1,
/** Intersection
\f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f] */
HISTCMP_INTERSECT = 2,
/** Bhattacharyya distance
(In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
\f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */
HISTCMP_BHATTACHARYYA = 3,
HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA
/** Alternative Chi-Square
\f[d(H_1,H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f]
This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */
HISTCMP_CHISQR_ALT = 4,
/** Kullback-Leibler divergence
\f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */
HISTCMP_KL_DIV = 5
};
/** the color conversion code
@see @ref imgproc_color_conversions
@ingroup imgproc_misc
*/
enum ColorConversionCodes {
COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR image
COLOR_RGB2RGBA = COLOR_BGR2BGRA,
COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR image
COLOR_RGBA2RGB = COLOR_BGRA2BGR,
COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
COLOR_RGB2BGRA = COLOR_BGR2RGBA,
COLOR_RGBA2BGR = 3,
COLOR_BGRA2RGB = COLOR_RGBA2BGR,
COLOR_BGR2RGB = 4,
COLOR_RGB2BGR = COLOR_BGR2RGB,
COLOR_BGRA2RGBA = 5,
COLOR_RGBA2BGRA = COLOR_BGRA2RGBA,
COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
COLOR_RGB2GRAY = 7,
COLOR_GRAY2BGR = 8,
COLOR_GRAY2RGB = COLOR_GRAY2BGR,
COLOR_GRAY2BGRA = 9,
COLOR_GRAY2RGBA = COLOR_GRAY2BGRA,
COLOR_BGRA2GRAY = 10,
COLOR_RGBA2GRAY = 11,
COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
COLOR_RGB2BGR565 = 13,
COLOR_BGR5652BGR = 14,
COLOR_BGR5652RGB = 15,
COLOR_BGRA2BGR565 = 16,
COLOR_RGBA2BGR565 = 17,
COLOR_BGR5652BGRA = 18,
COLOR_BGR5652RGBA = 19,
COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images)
COLOR_BGR5652GRAY = 21,
COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images)
COLOR_RGB2BGR555 = 23,
COLOR_BGR5552BGR = 24,
COLOR_BGR5552RGB = 25,
COLOR_BGRA2BGR555 = 26,
COLOR_RGBA2BGR555 = 27,
COLOR_BGR5552BGRA = 28,
COLOR_BGR5552RGBA = 29,
COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images)
COLOR_BGR5552GRAY = 31,
COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
COLOR_RGB2XYZ = 33,
COLOR_XYZ2BGR = 34,
COLOR_XYZ2RGB = 35,
COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
COLOR_RGB2YCrCb = 37,
COLOR_YCrCb2BGR = 38,
COLOR_YCrCb2RGB = 39,
COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions"
COLOR_RGB2HSV = 41,
COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
COLOR_RGB2Lab = 45,
COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
COLOR_RGB2Luv = 51,
COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions"
COLOR_RGB2HLS = 53,
COLOR_HSV2BGR = 54, //!< backward conversions to RGB/BGR
COLOR_HSV2RGB = 55,
COLOR_Lab2BGR = 56,
COLOR_Lab2RGB = 57,
COLOR_Luv2BGR = 58,
COLOR_Luv2RGB = 59,
COLOR_HLS2BGR = 60,
COLOR_HLS2RGB = 61,
COLOR_BGR2HSV_FULL = 66, //!<
COLOR_RGB2HSV_FULL = 67,
COLOR_BGR2HLS_FULL = 68,
COLOR_RGB2HLS_FULL = 69,
COLOR_HSV2BGR_FULL = 70,
COLOR_HSV2RGB_FULL = 71,
COLOR_HLS2BGR_FULL = 72,
COLOR_HLS2RGB_FULL = 73,
COLOR_LBGR2Lab = 74,
COLOR_LRGB2Lab = 75,
COLOR_LBGR2Luv = 76,
COLOR_LRGB2Luv = 77,
COLOR_Lab2LBGR = 78,
COLOR_Lab2LRGB = 79,
COLOR_Luv2LBGR = 80,
COLOR_Luv2LRGB = 81,
COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUV
COLOR_RGB2YUV = 83,
COLOR_YUV2BGR = 84,
COLOR_YUV2RGB = 85,
//! YUV 4:2:0 family to RGB
COLOR_YUV2RGB_NV12 = 90,
COLOR_YUV2BGR_NV12 = 91,
COLOR_YUV2RGB_NV21 = 92,
COLOR_YUV2BGR_NV21 = 93,
COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
COLOR_YUV2RGBA_NV12 = 94,
COLOR_YUV2BGRA_NV12 = 95,
COLOR_YUV2RGBA_NV21 = 96,
COLOR_YUV2BGRA_NV21 = 97,
COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
COLOR_YUV2RGB_YV12 = 98,
COLOR_YUV2BGR_YV12 = 99,
COLOR_YUV2RGB_IYUV = 100,
COLOR_YUV2BGR_IYUV = 101,
COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
COLOR_YUV2RGBA_YV12 = 102,
COLOR_YUV2BGRA_YV12 = 103,
COLOR_YUV2RGBA_IYUV = 104,
COLOR_YUV2BGRA_IYUV = 105,
COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
COLOR_YUV2GRAY_420 = 106,
COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
//! YUV 4:2:2 family to RGB
COLOR_YUV2RGB_UYVY = 107,
COLOR_YUV2BGR_UYVY = 108,
//COLOR_YUV2RGB_VYUY = 109,
//COLOR_YUV2BGR_VYUY = 110,
COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
COLOR_YUV2RGBA_UYVY = 111,
COLOR_YUV2BGRA_UYVY = 112,
//COLOR_YUV2RGBA_VYUY = 113,
//COLOR_YUV2BGRA_VYUY = 114,
COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
COLOR_YUV2RGB_YUY2 = 115,
COLOR_YUV2BGR_YUY2 = 116,
COLOR_YUV2RGB_YVYU = 117,
COLOR_YUV2BGR_YVYU = 118,
COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
COLOR_YUV2RGBA_YUY2 = 119,
COLOR_YUV2BGRA_YUY2 = 120,
COLOR_YUV2RGBA_YVYU = 121,
COLOR_YUV2BGRA_YVYU = 122,
COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
COLOR_YUV2GRAY_UYVY = 123,
COLOR_YUV2GRAY_YUY2 = 124,
//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,
COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
//! alpha premultiplication
COLOR_RGBA2mRGBA = 125,
COLOR_mRGBA2RGBA = 126,
//! RGB to YUV 4:2:0 family
COLOR_RGB2YUV_I420 = 127,
COLOR_BGR2YUV_I420 = 128,
COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
COLOR_RGBA2YUV_I420 = 129,
COLOR_BGRA2YUV_I420 = 130,
COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
COLOR_RGB2YUV_YV12 = 131,
COLOR_BGR2YUV_YV12 = 132,
COLOR_RGBA2YUV_YV12 = 133,
COLOR_BGRA2YUV_YV12 = 134,
//! Demosaicing
COLOR_BayerBG2BGR = 46,
COLOR_BayerGB2BGR = 47,
COLOR_BayerRG2BGR = 48,
COLOR_BayerGR2BGR = 49,
COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,
COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,
COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,
COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,
COLOR_BayerBG2GRAY = 86,
COLOR_BayerGB2GRAY = 87,
COLOR_BayerRG2GRAY = 88,
COLOR_BayerGR2GRAY = 89,
//! Demosaicing using Variable Number of Gradients
COLOR_BayerBG2BGR_VNG = 62,
COLOR_BayerGB2BGR_VNG = 63,
COLOR_BayerRG2BGR_VNG = 64,
COLOR_BayerGR2BGR_VNG = 65,
COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,
COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,
COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,
COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,
//! Edge-Aware Demosaicing
COLOR_BayerBG2BGR_EA = 135,
COLOR_BayerGB2BGR_EA = 136,
COLOR_BayerRG2BGR_EA = 137,
COLOR_BayerGR2BGR_EA = 138,
COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA,
COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA,
COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA,
COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA,
COLOR_COLORCVT_MAX = 139
};
/** types of intersection between rectangles
@ingroup imgproc_shape
*/
enum RectanglesIntersectTypes {
INTERSECT_NONE = 0, //!< No intersection
INTERSECT_PARTIAL = 1, //!< There is a partial intersection
INTERSECT_FULL = 2 //!< One of the rectangle is fully enclosed in the other
};
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
class CV_EXPORTS GeneralizedHough : public Algorithm
{
public:
//! set template to search
virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
//! find template on image
virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
//! Canny low threshold.
virtual void setCannyLowThresh(int cannyLowThresh) = 0;
virtual int getCannyLowThresh() const = 0;
//! Canny high threshold.
virtual void setCannyHighThresh(int cannyHighThresh) = 0;
virtual int getCannyHighThresh() const = 0;
//! Minimum distance between the centers of the detected objects.
virtual void setMinDist(double minDist) = 0;
virtual double getMinDist() const = 0;
//! Inverse ratio of the accumulator resolution to the image resolution.
virtual void setDp(double dp) = 0;
virtual double getDp() const = 0;
//! Maximal size of inner buffers.
virtual void setMaxBufferSize(int maxBufferSize) = 0;
virtual int getMaxBufferSize() const = 0;
};
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Detects position only without traslation and rotation
class CV_EXPORTS GeneralizedHoughBallard : public GeneralizedHough
{
public:
//! R-Table levels.
virtual void setLevels(int levels) = 0;
virtual int getLevels() const = 0;
//! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
virtual void setVotesThreshold(int votesThreshold) = 0;
virtual int getVotesThreshold() const = 0;
};
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
//! Detects position, traslation and rotation
class CV_EXPORTS GeneralizedHoughGuil : public GeneralizedHough
{
public:
//! Angle difference in degrees between two points in feature.
virtual void setXi(double xi) = 0;
virtual double getXi() const = 0;
//! Feature table levels.
virtual void setLevels(int levels) = 0;
virtual int getLevels() const = 0;
//! Maximal difference between angles that treated as equal.
virtual void setAngleEpsilon(double angleEpsilon) = 0;
virtual double getAngleEpsilon() const = 0;
//! Minimal rotation angle to detect in degrees.
virtual void setMinAngle(double minAngle) = 0;
virtual double getMinAngle() const = 0;
//! Maximal rotation angle to detect in degrees.
virtual void setMaxAngle(double maxAngle) = 0;
virtual double getMaxAngle() const = 0;
//! Angle step in degrees.
virtual void setAngleStep(double angleStep) = 0;
virtual double getAngleStep() const = 0;
//! Angle votes threshold.
virtual void setAngleThresh(int angleThresh) = 0;
virtual int getAngleThresh() const = 0;
//! Minimal scale to detect.
virtual void setMinScale(double minScale) = 0;
virtual double getMinScale() const = 0;
//! Maximal scale to detect.
virtual void setMaxScale(double maxScale) = 0;
virtual double getMaxScale() const = 0;
//! Scale step.
virtual void setScaleStep(double scaleStep) = 0;
virtual double getScaleStep() const = 0;
//! Scale votes threshold.
virtual void setScaleThresh(int scaleThresh) = 0;
virtual int getScaleThresh() const = 0;
//! Position votes threshold.
virtual void setPosThresh(int posThresh) = 0;
virtual int getPosThresh() const = 0;
};
class CV_EXPORTS_W CLAHE : public Algorithm
{
public:
CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
CV_WRAP virtual double getClipLimit() const = 0;
CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
CV_WRAP virtual Size getTilesGridSize() const = 0;
CV_WRAP virtual void collectGarbage() = 0;
};
//! @addtogroup imgproc_subdiv2d
//! @{
class CV_EXPORTS_W Subdiv2D
{
public:
/** Subdiv2D point location cases */
enum { PTLOC_ERROR = -2, //!< Point location error
PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect
PTLOC_INSIDE = 0, //!< Point inside some facet
PTLOC_VERTEX = 1, //!< Point coincides with one of the subdivision vertices
PTLOC_ON_EDGE = 2 //!< Point on some edge
};
/** Subdiv2D edge type navigation (see: getEdge()) */
enum { NEXT_AROUND_ORG = 0x00,
NEXT_AROUND_DST = 0x22,
PREV_AROUND_ORG = 0x11,
PREV_AROUND_DST = 0x33,
NEXT_AROUND_LEFT = 0x13,
NEXT_AROUND_RIGHT = 0x31,
PREV_AROUND_LEFT = 0x20,
PREV_AROUND_RIGHT = 0x02
};
/** creates an empty Subdiv2D object.
To create a new empty Delaunay subdivision you need to use the initDelaunay() function.
*/
CV_WRAP Subdiv2D();
/** @overload
@param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision.
The function creates an empty Delaunay subdivision where 2D points can be added using the function
insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
error is raised.
*/
CV_WRAP Subdiv2D(Rect rect);
/** @brief Creates a new empty Delaunay subdivision
@param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision.
*/
CV_WRAP void initDelaunay(Rect rect);
/** @brief Insert a single point into a Delaunay triangulation.
@param pt – Point to insert.
The function inserts a single point into a subdivision and modifies the subdivision topology
appropriately. If a point with the same coordinates exists already, no new point is added.
@returns the ID of the point.
@note If the point is outside of the triangulation specified rect a runtime error is raised.
*/
CV_WRAP int insert(Point2f pt);
/** @brief Insert multiple points into a Delaunay triangulation.
@param ptvec – Points to insert.
The function inserts a vector of points into a subdivision and modifies the subdivision topology
appropriately.
*/
CV_WRAP void insert(const std::vector<Point2f>& ptvec);
/** @brief Returns the location of a point within a Delaunay triangulation.
@param pt – Point to locate.
@param edge – Output edge that the point belongs to or is located to the right of it.
@param vertex – Optional output vertex the input point coincides with.
The function locates the input point within the subdivision and gives one of the triangle edges
or vertices.
@returns an integer which specify one of the following five cases for point location:
- The point falls into some facet. The function returns PTLOC_INSIDE and edge will contain one of
edges of the facet.
- The point falls onto the edge. The function returns PTLOC_ON_EDGE and edge will contain this edge.
- The point coincides with one of the subdivision vertices. The function returns PTLOC_VERTEX and
vertex will contain a pointer to the vertex.
- The point is outside the subdivision reference rectangle. The function returns PTLOC_OUTSIDE_RECT
and no pointers are filled.
- One of input arguments is invalid. A runtime error is raised or, if silent or “parent” error
processing mode is selected, CV_PTLOC_ERROR is returnd.
*/
CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
/** @brief Finds the subdivision vertex closest to the given point.
@param pt – Input point.
@param nearestPt – Output subdivision vertex point.
The function is another function that locates the input point within the subdivision. It finds the
subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
of the facet containing the input point, though the facet (located using locate() ) is used as a
starting point.
@returns vertex ID.
*/
CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
/** @brief Returns a list of all edges.
@param edgeList – Output vector.
The function gives each edge as a 4 numbers vector, where each two are one of the edge
vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
*/
CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
/** @brief Returns a list of the leading edge ID connected to each triangle.
@param leadingEdgeList – Output vector.
The function gives one edge ID for each triangle.
*/
CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const;
/** @brief Returns a list of all triangles.
@param triangleList – Output vector.
The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
*/
CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
/** @brief Returns a list of all Voroni facets.
@param idx – Vector of vertices IDs to consider. For all vertices you can pass empty vector.
@param facetList – Output vector of the Voroni facets.
@param facetCenters – Output vector of the Voroni facets center points.
*/
CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
CV_OUT std::vector<Point2f>& facetCenters);
/** @brief Returns vertex location from vertex ID.
@param vertex – vertex ID.
@param firstEdge – Optional. The first edge ID which is connected to the vertex.
@returns vertex (x,y)
*/
CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
/** @brief Returns one of the edges related to the given edge.
@param edge – Subdivision edge ID.
@param nextEdgeType - Parameter specifying which of the related edges to return.
The following values are possible:
- NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
- NEXT_AROUND_DST next around the edge vertex ( eDnext )
- PREV_AROUND_ORG previous around the edge origin (reversed eRnext )
- PREV_AROUND_DST previous around the edge destination (reversed eLnext )
- NEXT_AROUND_LEFT next around the left facet ( eLnext )
- NEXT_AROUND_RIGHT next around the right facet ( eRnext )
- PREV_AROUND_LEFT previous around the left facet (reversed eOnext )
- PREV_AROUND_RIGHT previous around the right facet (reversed eDnext )
![sample output](pics/quadedge.png)
@returns edge ID related to the input edge.
*/
CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
/** @brief Returns next edge around the edge origin.
@param edge – Subdivision edge ID.
@returns an integer which is next edge ID around the edge origin: eOnext on the
picture above if e is the input edge).
*/
CV_WRAP int nextEdge(int edge) const;
/** @brief Returns another edge of the same quad-edge.
@param edge – Subdivision edge ID.
@param rotate - Parameter specifying which of the edges of the same quad-edge as the input
one to return. The following values are possible:
- 0 - the input edge ( e on the picture below if e is the input edge)
- 1 - the rotated edge ( eRot )
- 2 - the reversed edge (reversed e (in green))
- 3 - the reversed rotated edge (reversed eRot (in green))
@returns one of the edges ID of the same quad-edge as the input edge.
*/
CV_WRAP int rotateEdge(int edge, int rotate) const;
CV_WRAP int symEdge(int edge) const;
/** @brief Returns the edge origin.
@param edge – Subdivision edge ID.
@param orgpt – Output vertex location.
@returns vertex ID.
*/
CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
/** @brief Returns the edge destination.
@param edge – Subdivision edge ID.
@param dstpt – Output vertex location.
@returns vertex ID.
*/
CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
protected:
int newEdge();
void deleteEdge(int edge);
int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
void deletePoint(int vtx);
void setEdgePoints( int edge, int orgPt, int dstPt );
void splice( int edgeA, int edgeB );
int connectEdges( int edgeA, int edgeB );
void swapEdges( int edge );
int isRightOf(Point2f pt, int edge) const;
void calcVoronoi();
void clearVoronoi();
void checkSubdiv() const;
struct CV_EXPORTS Vertex
{
Vertex();
Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
bool isvirtual() const;
bool isfree() const;
int firstEdge;
int type;
Point2f pt;
};
struct CV_EXPORTS QuadEdge
{
QuadEdge();
QuadEdge(int edgeidx);
bool isfree() const;
int next[4];
int pt[4];
};
//! All of the vertices
std::vector<Vertex> vtx;
//! All of the edges
std::vector<QuadEdge> qedges;
int freeQEdge;
int freePoint;
bool validGeometry;
int recentEdge;
//! Top left corner of the bounding rect
Point2f topLeft;
//! Bottom right corner of the bounding rect
Point2f bottomRight;
};
//! @} imgproc_subdiv2d
//! @addtogroup imgproc_feature
//! @{
/** @example lsd_lines.cpp
An example using the LineSegmentDetector
*/
/** @brief Line segment detector class
following the algorithm described at @cite Rafael12 .
*/
class CV_EXPORTS_W LineSegmentDetector : public Algorithm
{
public:
/** @brief Finds lines in the input image.
This is the output of the default parameters of the algorithm on the above shown image.
![image](pics/building_lsd.png)
@param _image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
`lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
@param _lines A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line. Where
Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
oriented depending on the gradient.
@param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
@param prec Vector of precisions with which the lines are found.
@param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
bigger the value, logarithmically better the detection.
- -1 corresponds to 10 mean false alarms
- 0 corresponds to 1 mean false alarm
- 1 corresponds to 0.1 mean false alarms
This vector will be calculated only when the objects type is LSD_REFINE_ADV.
*/
CV_WRAP virtual void detect(InputArray _image, OutputArray _lines,
OutputArray width = noArray(), OutputArray prec = noArray(),
OutputArray nfa = noArray()) = 0;
/** @brief Draws the line segments on a given image.
@param _image The image, where the liens will be drawn. Should be bigger or equal to the image,
where the lines were found.
@param lines A vector of the lines that needed to be drawn.
*/
CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines) = 0;
/** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
@param size The size of the image, where lines1 and lines2 were found.
@param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
@param lines2 The second group of lines. They visualized in red color.
@param _image Optional image, where the lines will be drawn. The image should be color(3-channel)
in order for lines1 and lines2 to be drawn in the above mentioned colors.
*/
CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) = 0;
virtual ~LineSegmentDetector() { }
};
/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
to edit those, as to tailor it for their own application.
@param _refine The way found lines will be refined, see cv::LineSegmentDetectorModes
@param _scale The scale of the image that will be used to find the lines. Range (0..1].
@param _sigma_scale Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale.
@param _quant Bound to the quantization error on the gradient norm.
@param _ang_th Gradient angle tolerance in degrees.
@param _log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advancent refinement
is chosen.
@param _density_th Minimal density of aligned region points in the enclosing rectangle.
@param _n_bins Number of bins in pseudo-ordering of gradient modulus.
*/
CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
//! @} imgproc_feature
//! @addtogroup imgproc_filter
//! @{
/** @brief Returns Gaussian filter coefficients.
The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
coefficients:
\f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
You may also use the higher-level GaussianBlur.
@param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
@param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
`sigma = 0.3\*((ksize-1)\*0.5 - 1) + 0.8`.
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
@sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
*/
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
/** @brief Returns filter coefficients for computing spatial image derivatives.
The function computes and returns the filter coefficients for spatial image derivatives. When
`ksize=CV_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see cv::Scharr). Otherwise, Sobel
kernels are generated (see cv::Sobel). The filters are normally passed to sepFilter2D or to
@param kx Output matrix of row filter coefficients. It has the type ktype .
@param ky Output matrix of column filter coefficients. It has the type ktype .
@param dx Derivative order in respect of x.
@param dy Derivative order in respect of y.
@param ksize Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7.
@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
going to filter floating-point images, you are likely to use the normalized kernels. But if you
compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
all the fractional bits, you may want to set normalize=false .
@param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
*/
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
int dx, int dy, int ksize,
bool normalize = false, int ktype = CV_32F );
/** @brief Returns Gabor filter coefficients.
For more details about gabor filter equations and parameters, see: [Gabor
Filter](http://en.wikipedia.org/wiki/Gabor_filter).
@param ksize Size of the filter returned.
@param sigma Standard deviation of the gaussian envelope.
@param theta Orientation of the normal to the parallel stripes of a Gabor function.
@param lambd Wavelength of the sinusoidal factor.
@param gamma Spatial aspect ratio.
@param psi Phase offset.
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
*/
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
/** @brief Returns a structuring element of the specified size and shape for morphological operations.
The function constructs and returns the structuring element that can be further passed to cv::erode,
cv::dilate or cv::morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
the structuring element.
@param shape Element shape that could be one of cv::MorphShapes
@param ksize Size of the structuring element.
@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
position. In other cases the anchor just regulates how much the result of the morphological
operation is shifted.
*/
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
/** @brief Blurs an image using the median filter.
The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
In-place operation is supported.
@note The median filter uses BORDER_REPLICATE internally to cope with border pixels, see cv::BorderTypes
@param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
@param dst destination array of the same size and type as src.
@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
@sa bilateralFilter, blur, boxFilter, GaussianBlur
*/
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
/** @brief Blurs an image using a Gaussian filter.
The function convolves the source image with the specified Gaussian kernel. In-place filtering is
supported.
@param src input image; the image can have any number of channels, which are processed
independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
@param dst output image of the same size and type as src.
@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
positive and odd. Or, they can be zero's and then they are computed from sigma.
@param sigmaX Gaussian kernel standard deviation in X direction.
@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
respectively (see cv::getGaussianKernel for details); to fully control the result regardless of
possible future modifications of all this semantics, it is recommended to specify all of ksize,
sigmaX, and sigmaY.
@param borderType pixel extrapolation method, see cv::BorderTypes
@sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
*/
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
double sigmaX, double sigmaY = 0,
int borderType = BORDER_DEFAULT );
/** @brief Applies the bilateral filter to an image.
The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
very slow compared to most filters.
_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
strong effect, making the image look "cartoonish".
_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
applications, and perhaps d=9 for offline applications that need heavy noise filtering.
This filter does not work inplace.
@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
@param dst Destination image of the same size and type as src .
@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
it is computed from sigmaSpace.
@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
in larger areas of semi-equal color.
@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
proportional to sigmaSpace.
@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
*/
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
double sigmaColor, double sigmaSpace,
int borderType = BORDER_DEFAULT );
/** @brief Blurs an image using the box filter.
The function smoothes an image using the kernel:
\f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f]
where
\f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f]
Unnormalized box filter is useful for computing various integral characteristics over each pixel
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use cv::integral.
@param src input image.
@param dst output image of the same size and type as src.
@param ddepth the output image depth (-1 to use src.depth()).
@param ksize blurring kernel size.
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.
@param normalize flag, specifying whether the kernel is normalized by its area or not.
@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
@sa blur, bilateralFilter, GaussianBlur, medianBlur, integral
*/
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
Size ksize, Point anchor = Point(-1,-1),
bool normalize = true,
int borderType = BORDER_DEFAULT );
/** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
The unnormalized square box filter can be useful in computing local image statistics such as the the local
variance and standard deviation around the neighborhood of a pixel.
@param _src input image
@param _dst output image of the same size and type as _src
@param ddepth the output image depth (-1 to use src.depth())
@param ksize kernel size
@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
center.
@param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
@sa boxFilter
*/
CV_EXPORTS_W void sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth,
Size ksize, Point anchor = Point(-1, -1),
bool normalize = true,
int borderType = BORDER_DEFAULT );
/** @brief Blurs an image using the normalized box filter.
The function smoothes an image using the kernel:
\f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f]
The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(),
anchor, true, borderType)`.
@param src input image; it can have any number of channels, which are processed independently, but
the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
@param dst output image of the same size and type as src.
@param ksize blurring kernel size.
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.
@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
@sa boxFilter, bilateralFilter, GaussianBlur, medianBlur
*/
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
Size ksize, Point anchor = Point(-1,-1),
int borderType = BORDER_DEFAULT );
/** @brief Convolves an image with the kernel.
The function applies an arbitrary linear filter to an image. In-place operation is supported. When
the aperture is partially outside the image, the function interpolates outlier pixel values
according to the specified border mode.
The function does actually compute correlation, not the convolution:
\f[\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
the kernel using cv::flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
anchor.y - 1)`.
The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
larger) and the direct algorithm for small kernels.
@param src input image.
@param dst output image of the same size and the same number of channels as src.
@param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
matrix; if you want to apply different kernels to different channels, split the image into
separate color planes using split and process them individually.
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
is at the kernel center.
@param delta optional value added to the filtered pixels before storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@sa sepFilter2D, dft, matchTemplate
*/
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
InputArray kernel, Point anchor = Point(-1,-1),
double delta = 0, int borderType = BORDER_DEFAULT );
/** @brief Applies a separable linear filter to an image.
The function applies a separable linear filter to the image. That is, first, every row of src is
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
kernel kernelY. The final result shifted by delta is stored in dst .
@param src Source image.
@param dst Destination image of the same size and the same number of channels as src .
@param ddepth Destination image depth, see @ref filter_depths "combinations"
@param kernelX Coefficients for filtering each row.
@param kernelY Coefficients for filtering each column.
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.
@param delta Value added to the filtered results before storing them.
@param borderType Pixel extrapolation method, see cv::BorderTypes
@sa filter2D, Sobel, GaussianBlur, boxFilter, blur
*/
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
InputArray kernelX, InputArray kernelY,
Point anchor = Point(-1,-1),
double delta = 0, int borderType = BORDER_DEFAULT );
/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
or the second x- or y- derivatives.
There is also the special value `ksize = CV_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
for the x-derivative, or transposed for the y-derivative.
The function calculates an image derivative by convolving the image with the appropriate kernel:
\f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
case corresponds to a kernel of:
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
The second case corresponds to a kernel of:
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
@param src input image.
@param dst output image of the same size and the same number of channels as src .
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
8-bit input images it will result in truncated derivatives.
@param dx order of the derivative x.
@param dy order of the derivative y.
@param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see cv::getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
*/
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
int dx, int dy, int ksize = 3,
double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT );
/** @brief Calculates the first order image derivative in both x and y using a Sobel operator
Equivalent to calling:
@code
Sobel( src, dx, CV_16SC1, 1, 0, 3 );
Sobel( src, dy, CV_16SC1, 0, 1, 3 );
@endcode
@param src input image.
@param dx output image with first-order derivative in x.
@param dy output image with first-order derivative in y.
@param ksize size of Sobel kernel. It must be 3.
@param borderType pixel extrapolation method, see cv::BorderTypes
@sa Sobel
*/
CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
OutputArray dy, int ksize = 3,
int borderType = BORDER_DEFAULT );
/** @brief Calculates the first x- or y- image derivative using Scharr operator.
The function computes the first x- or y- spatial image derivative using the Scharr operator. The
call
\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
is equivalent to
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .\f]
@param src input image.
@param dst output image of the same size and the same number of channels as src.
@param ddepth output image depth, see @ref filter_depths "combinations"
@param dx order of the derivative x.
@param dy order of the derivative y.
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@sa cartToPolar
*/
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
int dx, int dy, double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT );
/** @example laplace.cpp
An example using Laplace transformations for edge detection
*/
/** @brief Calculates the Laplacian of an image.
The function calculates the Laplacian of the source image by adding up the second x and y
derivatives calculated using the Sobel operator:
\f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
with the following \f$3 \times 3\f$ aperture:
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
@param src Source image.
@param dst Destination image of the same size and the same number of channels as src .
@param ddepth Desired depth of the destination image.
@param ksize Aperture size used to compute the second-derivative filters. See getDerivKernels for
details. The size must be positive and odd.
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
applied. See getDerivKernels for details.
@param delta Optional delta value that is added to the results prior to storing them in dst .
@param borderType Pixel extrapolation method, see cv::BorderTypes
@sa Sobel, Scharr
*/
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
int ksize = 1, double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT );
//! @} imgproc_filter
//! @addtogroup imgproc_feature
//! @{
/** @example edge.cpp
An example on using the canny edge detector
*/
/** @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
The function finds edges in the input image image and marks them in the output map edges using the
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
largest value is used to find initial segments of strong edges. See
<http://en.wikipedia.org/wiki/Canny_edge_detector>
@param image 8-bit input image.
@param edges output edge map; single channels 8-bit image, which has the same size as image .
@param threshold1 first threshold for the hysteresis procedure.
@param threshold2 second threshold for the hysteresis procedure.
@param apertureSize aperture size for the Sobel operator.
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
L2gradient=false ).
*/
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
double threshold1, double threshold2,
int apertureSize = 3, bool L2gradient = false );
/** \overload
Finds edges in an image using the Canny algorithm with custom image gradient.
@param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
@param dy 16-bit y derivative of input image (same type as dx).
@param edges,threshold1,threshold2,L2gradient See cv::Canny
*/
CV_EXPORTS_W void Canny( InputArray dx, InputArray dy,
OutputArray edges,
double threshold1, double threshold2,
bool L2gradient = false );
/** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
of the formulae in the cornerEigenValsAndVecs description.
@param src Input single-channel 8-bit or floating-point image.
@param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
src .
@param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. See cv::BorderTypes.
*/
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
int blockSize, int ksize = 3,
int borderType = BORDER_DEFAULT );
/** @brief Harris corner detector.
The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
computes the following characteristic:
\f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
Corners in the image can be found as the local maxima of this response map.
@param src Input single-channel 8-bit or floating-point image.
@param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
size as src .
@param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
@param ksize Aperture parameter for the Sobel operator.
@param k Harris detector free parameter. See the formula below.
@param borderType Pixel extrapolation method. See cv::BorderTypes.
*/
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
int ksize, double k,
int borderType = BORDER_DEFAULT );
/** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
\f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
where the derivatives are computed using the Sobel operator.
After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
- \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
- \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
- \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
The output of the function can be used for robust edge or corner detection.
@param src Input single-channel 8-bit or floating-point image.
@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
@param blockSize Neighborhood size (see details below).
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. See cv::BorderTypes.
@sa cornerMinEigenVal, cornerHarris, preCornerDetect
*/
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
int blockSize, int ksize,
int borderType = BORDER_DEFAULT );
/** @brief Calculates a feature map for corner detection.
The function calculates the complex spatial derivative-based function of the source image
\f[\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f]
where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
derivatives, and \f$D_{xy}\f$ is the mixed derivative.
The corners can be found as local maximums of the functions, as shown below:
@code
Mat corners, dilated_corners;
preCornerDetect(image, corners, 3);
// dilation with 3x3 rectangular structuring element
dilate(corners, dilated_corners, Mat(), 1);
Mat corner_mask = corners == dilated_corners;
@endcode
@param src Source single-channel 8-bit of floating-point image.
@param dst Output image that has the type CV_32F and the same size as src .
@param ksize %Aperture size of the Sobel .
@param borderType Pixel extrapolation method. See cv::BorderTypes.
*/
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
int borderType = BORDER_DEFAULT );
/** @brief Refines the corner locations.
The function iterates to find the sub-pixel accurate location of corners or radial saddle points, as
shown on the figure below.
![image](pics/cornersubpix.png)
Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
subject to image and measurement noise. Consider the expression:
\f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f]
where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
with \f$\epsilon_i\f$ set to zero:
\f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f]
where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
\f[q = G^{-1} \cdot b\f]
The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
until the center stays within a set threshold.
@param image Input image.
@param corners Initial coordinates of the input corners and refined coordinates provided for
output.
@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
then a \f$5*2+1 \times 5*2+1 = 11 \times 11\f$ search window is used.
@param zeroZone Half of the size of the dead region in the middle of the search zone over which
the summation in the formula below is not done. It is used sometimes to avoid possible
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
a size.
@param criteria Criteria for termination of the iterative process of corner refinement. That is,
the process of corner position refinement stops either after criteria.maxCount iterations or when
the corner position moves by less than criteria.epsilon on some iteration.
*/
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
Size winSize, Size zeroZone,
TermCriteria criteria );
/** @brief Determines strong corners on an image.
The function finds the most prominent corners in the image or in the specified image region, as
described in @cite Shi94
- Function calculates the corner quality measure at every source image pixel using the
cornerMinEigenVal or cornerHarris .
- Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
retained).
- The corners with the minimal eigenvalue less than
\f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
- The remaining corners are sorted by the quality measure in the descending order.
- Function throws away each corner for which there is a stronger corner at a distance less than
maxDistance.
The function can be used to initialize a point-based tracker of an object.
@note If the function is called with different values A and B of the parameter qualityLevel , and
A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
with qualityLevel=B .
@param image Input 8-bit or floating-point 32-bit, single-channel image.
@param corners Output vector of detected corners.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
and all detected corners are returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param mask Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.
@param k Free parameter of the Harris detector.
@sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
*/
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray mask = noArray(), int blockSize = 3,
bool useHarrisDetector = false, double k = 0.04 );
/** @example houghlines.cpp
An example using the Hough line detector
*/
/** @brief Finds lines in a binary image using the standard Hough transform.
The function implements the standard or standard multi-scale Hough transform algorithm for line
detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
transform.
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
@param lines Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
votes ( \f$>\texttt{threshold}\f$ ).
@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
parameters should be positive.
@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
Must fall between 0 and max_theta.
@param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines.
Must fall between min_theta and CV_PI.
*/
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
double rho, double theta, int threshold,
double srn = 0, double stn = 0,
double min_theta = 0, double max_theta = CV_PI );
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
The function implements the probabilistic Hough transform algorithm for line detection, described
in @cite Matas00
See the line detection example below:
@code
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
Mat src, dst, color_dst;
if( argc != 2 || !(src=imread(argv[1], 0)).data)
return -1;
Canny( src, dst, 50, 200, 3 );
cvtColor( dst, color_dst, COLOR_GRAY2BGR );
#if 0
vector<Vec2f> lines;
HoughLines( dst, lines, 1, CV_PI/180, 100 );
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0];
float theta = lines[i][1];
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
Point pt1(cvRound(x0 + 1000*(-b)),
cvRound(y0 + 1000*(a)));
Point pt2(cvRound(x0 - 1000*(-b)),
cvRound(y0 - 1000*(a)));
line( color_dst, pt1, pt2, Scalar(0,0,255), 3, 8 );
}
#else
vector<Vec4i> lines;
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
for( size_t i = 0; i < lines.size(); i++ )
{
line( color_dst, Point(lines[i][0], lines[i][1]),
Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 );
}
#endif
namedWindow( "Source", 1 );
imshow( "Source", src );
namedWindow( "Detected Lines", 1 );
imshow( "Detected Lines", color_dst );
waitKey(0);
return 0;
}
@endcode
This is a sample picture the function parameters have been tuned for:
![image](pics/building.jpg)
And this is the output of the above program in case of the probabilistic Hough transform:
![image](pics/houghp.png)
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
@param lines Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
votes ( \f$>\texttt{threshold}\f$ ).
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
@param maxLineGap Maximum allowed gap between points on the same line to link them.
@sa LineSegmentDetector
*/
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
double rho, double theta, int threshold,
double minLineLength = 0, double maxLineGap = 0 );
/** @example houghcircles.cpp
An example using the Hough circle detector
*/
/** @brief Finds circles in a grayscale image using the Hough transform.
The function finds circles in a grayscale image using a modification of the Hough transform.
Example: :
@code
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <math.h>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
Mat img, gray;
if( argc != 2 || !(img=imread(argv[1], 1)).data)
return -1;
cvtColor(img, gray, COLOR_BGR2GRAY);
// smooth it, otherwise a lot of false circles may be detected
GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
vector<Vec3f> circles;
HoughCircles(gray, circles, HOUGH_GRADIENT,
2, gray.rows/4, 200, 100 );
for( size_t i = 0; i < circles.size(); i++ )
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// draw the circle center
circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
// draw the circle outline
circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
namedWindow( "circles", 1 );
imshow( "circles", img );
waitKey(0);
return 0;
}
@endcode
@note Usually the function detects the centers of circles well. However, it may fail to find correct
radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
you know it. Or, you may ignore the returned radius, use only the center, and find the correct
radius using an additional procedure.
@param image 8-bit, single-channel, grayscale input image.
@param circles Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$ .
@param method Detection method, see cv::HoughModes. Currently, the only implemented method is HOUGH_GRADIENT
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.
@param param1 First method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the higher
threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
@param param2 Second method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the
accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
false circles may be detected. Circles, corresponding to the larger accumulator values, will be
returned first.
@param minRadius Minimum circle radius.
@param maxRadius Maximum circle radius.
@sa fitEllipse, minEnclosingCircle
*/
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
int method, double dp, double minDist,
double param1 = 100, double param2 = 100,
int minRadius = 0, int maxRadius = 0 );
//! @} imgproc_feature
//! @addtogroup imgproc_filter
//! @{
/** @example morphology2.cpp
An example using the morphological operations
*/
/** @brief Erodes an image by using a specific structuring element.
The function erodes the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the minimum is taken:
\f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
case of multi-channel images, each channel is processed independently.
@param src input image; the number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
@param dst output image of the same size and type as src.
@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
structuring element is used. Kernel can be created using getStructuringElement.
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times erosion is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa dilate, morphologyEx, getStructuringElement
*/
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
/** @brief Dilates an image by using a specific structuring element.
The function dilates the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the maximum is taken:
\f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
case of multi-channel images, each channel is processed independently.
@param src input image; the number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
@param dst output image of the same size and type as src\`.
@param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
structuring element is used. Kernel can be created using getStructuringElement
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times dilation is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa erode, morphologyEx, getStructuringElement
*/
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
/** @brief Performs advanced morphological transformations.
The function morphologyEx can perform advanced morphological transformations using an erosion and dilation as
basic operations.
Any of the operations can be done in-place. In case of multi-channel images, each channel is
processed independently.
@param src Source image. The number of channels can be arbitrary. The depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
@param dst Destination image of the same size and type as source image.
@param op Type of a morphological operation, see cv::MorphTypes
@param kernel Structuring element. It can be created using cv::getStructuringElement.
@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
kernel center.
@param iterations Number of times erosion and dilation are applied.
@param borderType Pixel extrapolation method, see cv::BorderTypes
@param borderValue Border value in case of a constant border. The default value has a special
meaning.
@sa dilate, erode, getStructuringElement
*/
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
int op, InputArray kernel,
Point anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue() );
//! @} imgproc_filter
//! @addtogroup imgproc_transform
//! @{
/** @brief Resizes an image.
The function resize resizes the image src down to or up to the specified size. Note that the
initial dst type or size are not taken into account. Instead, the size and type are derived from
the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
you may call the function as follows:
@code
// explicitly specify dsize=dst.size(); fx and fy will be computed from that.
resize(src, dst, dst.size(), 0, 0, interpolation);
@endcode
If you want to decimate the image by factor of 2 in each direction, you can call the function this
way:
@code
// specify fx and fy and let the function compute the destination image size.
resize(src, dst, Size(), 0.5, 0.5, interpolation);
@endcode
To shrink an image, it will generally look best with cv::INTER_AREA interpolation, whereas to
enlarge an image, it will generally look best with cv::INTER_CUBIC (slow) or cv::INTER_LINEAR
(faster but still looks OK).
@param src input image.
@param dst output image; it has the size dsize (when it is non-zero) or the size computed from
src.size(), fx, and fy; the type of dst is the same as of src.
@param dsize output image size; if it equals zero, it is computed as:
\f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
Either dsize or both fx and fy must be non-zero.
@param fx scale factor along the horizontal axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.width/src.cols}\f]
@param fy scale factor along the vertical axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.height/src.rows}\f]
@param interpolation interpolation method, see cv::InterpolationFlags
@sa warpAffine, warpPerspective, remap
*/
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
Size dsize, double fx = 0, double fy = 0,
int interpolation = INTER_LINEAR );
/** @brief Applies an affine transformation to an image.
The function warpAffine transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f]
when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
with cv::invertAffineTransform and then put in the formula above instead of M. The function cannot
operate in-place.
@param src input image.
@param dst output image that has the size dsize and the same type as src .
@param M \f$2\times 3\f$ transformation matrix.
@param dsize size of the output image.
@param flags combination of interpolation methods (see cv::InterpolationFlags) and the optional
flag WARP_INVERSE_MAP that means that M is the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
@param borderMode pixel extrapolation method (see cv::BorderTypes); when
borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
the "outliers" in the source image are not modified by the function.
@param borderValue value used in case of a constant border; by default, it is 0.
@sa warpPerspective, resize, remap, getRectSubPix, transform
*/
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
InputArray M, Size dsize,
int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT,
const Scalar& borderValue = Scalar());
/** @brief Applies a perspective transformation to an image.
The function warpPerspective transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
\frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
and then put in the formula above instead of M. The function cannot operate in-place.
@param src input image.
@param dst output image that has the size dsize and the same type as src .
@param M \f$3\times 3\f$ transformation matrix.
@param dsize size of the output image.
@param flags combination of interpolation methods (INTER_LINEAR or INTER_NEAREST) and the
optional flag WARP_INVERSE_MAP, that sets M as the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
@param borderMode pixel extrapolation method (BORDER_CONSTANT or BORDER_REPLICATE).
@param borderValue value used in case of a constant border; by default, it equals 0.
@sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform
*/
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
InputArray M, Size dsize,
int flags = INTER_LINEAR,
int borderMode = BORDER_CONSTANT,
const Scalar& borderValue = Scalar());
/** @brief Applies a generic geometrical transformation to an image.
The function remap transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f]
where values of pixels with non-integer coordinates are computed using one of available
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
\f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to
convert from floating to fixed-point representations of a map is that they can yield much faster
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
This function cannot operate in-place.
@param src Source image.
@param dst Destination image. It has the same size as map1 and the same type as src .
@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point
representation to fixed-point for speed.
@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
if map1 is (x,y) points), respectively.
@param interpolation Interpolation method (see cv::InterpolationFlags). The method INTER_AREA is
not supported by this function.
@param borderMode Pixel extrapolation method (see cv::BorderTypes). When
borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that
corresponds to the "outliers" in the source image are not modified by the function.
@param borderValue Value used in case of a constant border. By default, it is 0.
@note
Due to current implementaion limitations the size of an input and output images should be less than 32767x32767.
*/
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
InputArray map1, InputArray map2,
int interpolation, int borderMode = BORDER_CONSTANT,
const Scalar& borderValue = Scalar());
/** @brief Converts image transformation maps from one representation to another.
The function converts a pair of maps for remap from one representation to another. The following
options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
supported:
- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
most frequently used conversion operation, in which the original floating-point maps (see remap )
are converted to a more compact and much faster fixed-point representation. The first output array
contains the rounded coordinates and the second array (created only when nninterpolation=false )
contains indices in the interpolation tables.
- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
the original maps are stored in one 2-channel matrix.
- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
as the originals.
@param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
@param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
respectively.
@param dstmap1 The first output map that has the type dstmap1type and the same size as src .
@param dstmap2 The second output map.
@param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
CV_32FC2 .
@param nninterpolation Flag indicating whether the fixed-point maps are used for the
nearest-neighbor or for a more complex interpolation.
@sa remap, undistort, initUndistortRectifyMap
*/
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
OutputArray dstmap1, OutputArray dstmap2,
int dstmap1type, bool nninterpolation = false );
/** @brief Calculates an affine matrix of 2D rotation.
The function calculates the following matrix:
\f[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\f]
where
\f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
@param center Center of the rotation in the source image.
@param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
coordinate origin is assumed to be the top-left corner).
@param scale Isotropic scale factor.
@sa getAffineTransform, warpAffine, transform
*/
CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
/** @brief Calculates an affine transform from three pairs of the corresponding points.
The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
where
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f]
@param src Coordinates of triangle vertices in the source image.
@param dst Coordinates of the corresponding triangle vertices in the destination image.
@sa warpAffine, transform
*/
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
/** @brief Inverts an affine transformation.
The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
The result is also a \f$2 \times 3\f$ matrix of the same type as M.
@param M Original affine transformation.
@param iM Output reverse affine transformation.
*/
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
/** @brief Calculates a perspective transform from four pairs of the corresponding points.
The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
where
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
@param src Coordinates of quadrangle vertices in the source image.
@param dst Coordinates of the corresponding quadrangle vertices in the destination image.
@sa findHomography, warpPerspective, perspectiveTransform
*/
CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst );
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
/** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
The function getRectSubPix extracts pixels from src:
\f[dst(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
where the values of the pixels at non-integer coordinates are retrieved using bilinear
interpolation. Every channel of multi-channel images is processed independently. While the center of
the rectangle must be inside the image, parts of the rectangle may be outside. In this case, the
replication border mode (see cv::BorderTypes) is used to extrapolate the pixel values outside of
the image.
@param image Source image.
@param patchSize Size of the extracted patch.
@param center Floating point coordinates of the center of the extracted rectangle within the
source image. The center must be inside the image.
@param patch Extracted patch that has the size patchSize and the same number of channels as src .
@param patchType Depth of the extracted pixels. By default, they have the same depth as src .
@sa warpAffine, warpPerspective
*/
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
Point2f center, OutputArray patch, int patchType = -1 );
/** @example polar_transforms.cpp
An example using the cv::linearPolar and cv::logPolar operations
*/
/** @brief Remaps an image to semilog-polar coordinates space.
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image"):
\f[\begin{array}{l}
dst( \rho , \phi ) = src(x,y) \\
dst.size() \leftarrow src.size()
\end{array}\f]
where
\f[\begin{array}{l}
I = (dx,dy) = (x - center.x,y - center.y) \\
\rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
\phi = Ky \cdot \texttt{angle} (I)_{0..360 deg} \\
\end{array}\f]
and
\f[\begin{array}{l}
M = src.cols / log_e(maxRadius) \\
Ky = src.rows / 360 \\
\end{array}\f]
The function emulates the human "foveal" vision and can be used for fast scale and
rotation-invariant template matching, for object tracking and so forth.
@param src Source image
@param dst Destination image. It will have same size and type as src.
@param center The transformation center; where the output precision is maximal
@param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
@param flags A combination of interpolation methods, see cv::InterpolationFlags
@note
- The function can not operate in-place.
- To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
*/
CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
Point2f center, double M, int flags );
/** @brief Remaps an image to polar coordinates space.
@anchor polar_remaps_reference_image
![Polar remaps reference](pics/polar_remap_doc.png)
Transform the source image using the following transformation:
\f[\begin{array}{l}
dst( \rho , \phi ) = src(x,y) \\
dst.size() \leftarrow src.size()
\end{array}\f]
where
\f[\begin{array}{l}
I = (dx,dy) = (x - center.x,y - center.y) \\
\rho = Kx \cdot \texttt{magnitude} (I) ,\\
\phi = Ky \cdot \texttt{angle} (I)_{0..360 deg}
\end{array}\f]
and
\f[\begin{array}{l}
Kx = src.cols / maxRadius \\
Ky = src.rows / 360
\end{array}\f]
@param src Source image
@param dst Destination image. It will have same size and type as src.
@param center The transformation center;
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
@param flags A combination of interpolation methods, see cv::InterpolationFlags
@note
- The function can not operate in-place.
- To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
*/
CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
Point2f center, double maxRadius, int flags );
//! @} imgproc_transform
//! @addtogroup imgproc_misc
//! @{
/** @overload */
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
/** @overload */
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
/** @brief Calculates the integral of an image.
The function calculates one or more integral images for the source image as follows:
\f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
\f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f]
\f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f]
Using these integral images, you can calculate sum, mean, and standard deviation over a specific
up-right or rotated rectangular region of the image in a constant time, for example:
\f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
It makes possible to do a fast blurring or fast block correlation with a variable window size, for
example. In case of multi-channel images, sums for each channel are accumulated independently.
As a practical example, the next figure shows the calculation of the integral of a straight
rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
original image are shown, as well as the relative pixels in the integral images sum and tilted .
![integral calculation example](pics/integral.png)
@param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
@param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
@param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
floating-point (64f) array.
@param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
the same data type as sum.
@param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
CV_64F.
@param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
*/
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
OutputArray sqsum, OutputArray tilted,
int sdepth = -1, int sqdepth = -1 );
//! @} imgproc_misc
//! @addtogroup imgproc_motion
//! @{
/** @brief Adds an image to the accumulator.
The function adds src or some of its elements to dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
The functions accumulate\* can be used, for example, to collect statistics of a scene background
viewed by a still camera and for the further foreground-background segmentation.
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.
@param mask Optional operation mask.
@sa accumulateSquare, accumulateProduct, accumulateWeighted
*/
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
InputArray mask = noArray() );
/** @brief Adds the square of a source image to the accumulator.
The function adds the input image src or its selected region, raised to a power of 2, to the
accumulator dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.
@param mask Optional operation mask.
@sa accumulateSquare, accumulateProduct, accumulateWeighted
*/
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
InputArray mask = noArray() );
/** @brief Adds the per-element product of two input images to the accumulator.
The function adds the product of two images or their selected regions to the accumulator dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
@param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
@param src2 Second input image of the same type and the same size as src1 .
@param dst %Accumulator with the same number of channels as input images, 32-bit or 64-bit
floating-point.
@param mask Optional operation mask.
@sa accumulate, accumulateSquare, accumulateWeighted
*/
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
InputOutputArray dst, InputArray mask=noArray() );
/** @brief Updates a running average.
The function calculates the weighted sum of the input image src and the accumulator dst so that dst
becomes a running average of a frame sequence:
\f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
The function supports multi-channel images. Each channel is processed independently.
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.
@param alpha Weight of the input image.
@param mask Optional operation mask.
@sa accumulate, accumulateSquare, accumulateProduct
*/
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
double alpha, InputArray mask = noArray() );
/** @brief The function is used to detect translational shifts that occur between two images.
The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
the frequency domain. It can be used for fast image registration as well as motion estimation. For
more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
with getOptimalDFTSize.
The function performs the following equations:
- First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
image to remove possible edge effects. This window is cached until the array size changes to speed
up processing time.
- Next it computes the forward DFTs of each source array:
\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
where \f$\mathcal{F}\f$ is the forward DFT.
- It then computes the cross-power spectrum of each frequency domain array:
\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
- Next the cross-correlation is converted back into the time domain via the inverse DFT:
\f[r = \mathcal{F}^{-1}\{R\}\f]
- Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
achieve sub-pixel accuracy.
\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
- If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
peak) and will be smaller when there are multiple peaks.
@param src1 Source floating point array (CV_32FC1 or CV_64FC1)
@param src2 Source floating point array (CV_32FC1 or CV_64FC1)
@param window Floating point array with windowing coefficients to reduce edge effects (optional).
@param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
@returns detected phase shift (sub-pixel) between the two arrays.
@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
*/
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
InputArray window = noArray(), CV_OUT double* response = 0);
/** @brief This function computes a Hanning window coefficients in two dimensions.
See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
for more information.
An example is shown below:
@code
// create hanning window of size 100x100 and type CV_32F
Mat hann;
createHanningWindow(hann, Size(100, 100), CV_32F);
@endcode
@param dst Destination array to place Hann coefficients in
@param winSize The window size specifications
@param type Created array type
*/
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
//! @} imgproc_motion
//! @addtogroup imgproc_misc
//! @{
/** @brief Applies a fixed-level threshold to each array element.
The function applies fixed-level thresholding to a single-channel array. The function is typically
used to get a bi-level (binary) image out of a grayscale image ( cv::compare could be also used for
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
values. There are several types of thresholding supported by the function. They are determined by
type parameter.
Also, the special values cv::THRESH_OTSU or cv::THRESH_TRIANGLE may be combined with one of the
above values. In these cases, the function determines the optimal threshold value using the Otsu's
or Triangle algorithm and uses it instead of the specified thresh . The function returns the
computed threshold value. Currently, the Otsu's and Triangle methods are implemented only for 8-bit
images.
@param src input array (single-channel, 8-bit or 32-bit floating point).
@param dst output array of the same size and type as src.
@param thresh threshold value.
@param maxval maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding
types.
@param type thresholding type (see the cv::ThresholdTypes).
@sa adaptiveThreshold, findContours, compare, min, max
*/
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
double thresh, double maxval, int type );
/** @brief Applies an adaptive threshold to an array.
The function transforms a grayscale image to a binary image according to the formulae:
- **THRESH_BINARY**
\f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
- **THRESH_BINARY_INV**
\f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
The function can process the image in-place.
@param src Source 8-bit single-channel image.
@param dst Destination image of the same size and the same type as src.
@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
@param adaptiveMethod Adaptive thresholding algorithm to use, see cv::AdaptiveThresholdTypes
@param thresholdType Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV,
see cv::ThresholdTypes.
@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
pixel: 3, 5, 7, and so on.
@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
is positive but may be zero or negative as well.
@sa threshold, blur, GaussianBlur
*/
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
double maxValue, int adaptiveMethod,
int thresholdType, int blockSize, double C );
//! @} imgproc_misc
//! @addtogroup imgproc_filter
//! @{
/** @brief Blurs an image and downsamples it.
By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
any case, the following conditions should be satisfied:
\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
The function performs the downsampling step of the Gaussian pyramid construction. First, it
convolves the source image with the kernel:
\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
Then, it downsamples the image by rejecting even rows and columns.
@param src input image.
@param dst output image; it has the specified size and the same type as src.
@param dstsize size of the output image.
@param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported)
*/
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
/** @brief Upsamples an image and then blurs it.
By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
case, the following conditions should be satisfied:
\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\f]
The function performs the upsampling step of the Gaussian pyramid construction, though it can
actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
injecting even zero rows and columns and then convolves the result with the same kernel as in
pyrDown multiplied by 4.
@param src input image.
@param dst output image. It has the specified size and the same type as src .
@param dstsize size of the output image.
@param borderType Pixel extrapolation method, see cv::BorderTypes (only BORDER_DEFAULT is supported)
*/
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
/** @brief Constructs the Gaussian pyramid for an image.
The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
@param src Source image. Check pyrDown for the list of supported types.
@param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
@param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
@param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported)
*/
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
int maxlevel, int borderType = BORDER_DEFAULT );
//! @} imgproc_filter
//! @addtogroup imgproc_transform
//! @{
/** @brief Transforms an image to compensate for lens distortion.
The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of cv::initUndistortRectifyMap (with unity R ) and cv::remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
Those pixels in the destination image, for which there is no correspondent pixels in the source
image, are filled with zeros (black color).
A particular subset of the source image that will be visible in the corrected image can be regulated
by newCameraMatrix. You can use cv::getOptimalNewCameraMatrix to compute the appropriate
newCameraMatrix depending on your requirements.
The camera matrix and the distortion parameters can be determined using cv::calibrateCamera. If
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
the same.
@param src Input (distorted) image.
@param dst Output (corrected) image that has the same size and type as src .
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
cameraMatrix but you may additionally scale and shift the result by using a different matrix.
*/
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
InputArray cameraMatrix,
InputArray distCoeffs,
InputArray newCameraMatrix = noArray() );
/** @brief Computes the undistortion and rectification transformation map.
The function computes the joint undistortion and rectification transformation and represents the
result in the form of maps for remap. The undistorted image looks like original, as if it is
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
cv::getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
newCameraMatrix is normally set to P1 or P2 computed by cv::stereoRectify .
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
The function actually builds the maps for the inverse mapping algorithm that is used by remap. That
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original image from
camera). The following process is applied:
\f[
\begin{array}{l}
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
x' \leftarrow X/W \\
y' \leftarrow Y/W \\
r^2 \leftarrow x'^2 + y'^2 \\
x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
s\vecthree{x'''}{y'''}{1} =
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
map_x(u,v) \leftarrow x''' f_x + c_x \\
map_y(u,v) \leftarrow y''' f_y + c_y
\end{array}
\f]
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
are the distortion coefficients.
In case of a stereo camera, this function is called twice: once for each camera head, after
stereoRectify, which in its turn is called after cv::stereoCalibrate. But if the stereo camera
was not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using cv::stereoRectifyUncalibrated. For each camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
where cameraMatrix can be chosen arbitrarily.
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
computed by stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed. In cvInitUndistortMap R assumed to be an identity matrix.
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
@param size Undistorted image size.
@param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2, see cv::convertMaps
@param map1 The first output map.
@param map2 The second output map.
*/
CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
InputArray R, InputArray newCameraMatrix,
Size size, int m1type, OutputArray map1, OutputArray map2 );
//! initializes maps for cv::remap() for wide-angle
CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs,
Size imageSize, int destImageWidth,
int m1type, OutputArray map1, OutputArray map2,
int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
/** @brief Returns the default new camera matrix.
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
In the latter case, the new camera matrix will be:
\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
By default, the undistortion functions in OpenCV (see initUndistortRectifyMap, undistort) do not
move the principal point. However, when you work with stereo, it is important to move the principal
points in both views to the same y-coordinate (which is required by most of stereo correspondence
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
each view where the principal points are located at the center.
@param cameraMatrix Input camera matrix.
@param imgsize Camera view image size in pixels.
@param centerPrincipalPoint Location of the principal point in the new camera matrix. The
parameter indicates whether this location should be at the image center or not.
*/
CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize = Size(),
bool centerPrincipalPoint = false );
/** @brief Computes the ideal point coordinates from the observed point coordinates.
The function is similar to cv::undistort and cv::initUndistortRectifyMap but it operates on a
sparse set of points instead of a raster image. Also the function performs a reverse transformation
to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
planar object, it does, up to a translation vector, if the proper R is specified.
For each observed point coordinate \f$(u, v)\f$ the function computes:
\f[
\begin{array}{l}
x^{"} \leftarrow (u - c_x)/f_x \\
y^{"} \leftarrow (v - c_y)/f_y \\
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x \leftarrow X/W \\
y \leftarrow Y/W \\
\text{only performed if P is specified:} \\
u' \leftarrow x {f'}_x + {c'}_x \\
v' \leftarrow y {f'}_y + {c'}_y
\end{array}
\f]
where *undistort* is an approximate iterative algorithm that estimates the normalized original
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
coordinates do not depend on the camera matrix).
The function can be used for both a stereo camera head or a monocular camera (when R is empty).
@param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2).
@param dst Output ideal point coordinates after undistortion and reverse perspective
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
@param distCoeffs Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
cv::stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
cv::stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
*/
CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
InputArray cameraMatrix, InputArray distCoeffs,
InputArray R = noArray(), InputArray P = noArray());
//! @} imgproc_transform
//! @addtogroup imgproc_hist
//! @{
/** @example demhist.cpp
An example for creating histograms of an image
*/
/** @brief Calculates a histogram of a set of arrays.
The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
to increment a histogram bin are taken from the corresponding input arrays at the same location. The
sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
@code
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
int main( int argc, char** argv )
{
Mat src, hsv;
if( argc != 2 || !(src=imread(argv[1], 1)).data )
return -1;
cvtColor(src, hsv, COLOR_BGR2HSV);
// Quantize the hue to 30 levels
// and the saturation to 32 levels
int hbins = 30, sbins = 32;
int histSize[] = {hbins, sbins};
// hue varies from 0 to 179, see cvtColor
float hranges[] = { 0, 180 };
// saturation varies from 0 (black-gray-white) to
// 255 (pure spectrum color)
float sranges[] = { 0, 256 };
const float* ranges[] = { hranges, sranges };
MatND hist;
// we compute the histogram from the 0-th and 1-st channels
int channels[] = {0, 1};
calcHist( &hsv, 1, channels, Mat(), // do not use mask
hist, 2, histSize, ranges,
true, // the histogram is uniform
false );
double maxVal=0;
minMaxLoc(hist, 0, &maxVal, 0, 0);
int scale = 10;
Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
for( int h = 0; h < hbins; h++ )
for( int s = 0; s < sbins; s++ )
{
float binVal = hist.at<float>(h, s);
int intensity = cvRound(binVal*255/maxVal);
rectangle( histImg, Point(h*scale, s*scale),
Point( (h+1)*scale - 1, (s+1)*scale - 1),
Scalar::all(intensity),
CV_FILLED );
}
namedWindow( "Source", 1 );
imshow( "Source", src );
namedWindow( "H-S Histogram", 1 );
imshow( "H-S Histogram", histImg );
waitKey();
}
@endcode
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
size. Each of them can have an arbitrary number of channels.
@param nimages Number of source images.
@param channels List of the dims channels used to compute the histogram. The first array channels
are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
@param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
@param hist Output histogram, which is a dense or sparse dims -dimensional array.
@param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
(equal to 32 in the current OpenCV version).
@param histSize Array of histogram sizes in each dimension.
@param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the
histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
(inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary
\f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a
uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
\f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$
. The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not
counted in the histogram.
@param uniform Flag indicating whether the histogram is uniform or not (see above).
@param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning
when it is allocated. This feature enables you to compute a single histogram from several sets of
arrays, or to update the histogram in time.
*/
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, InputArray mask,
OutputArray hist, int dims, const int* histSize,
const float** ranges, bool uniform = true, bool accumulate = false );
/** @overload
this variant uses cv::SparseMat for output
*/
CV_EXPORTS void calcHist( const Mat* images, int nimages,
const int* channels, InputArray mask,
SparseMat& hist, int dims,
const int* histSize, const float** ranges,
bool uniform = true, bool accumulate = false );
/** @overload */
CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
const std::vector<int>& channels,
InputArray mask, OutputArray hist,
const std::vector<int>& histSize,
const std::vector<float>& ranges,
bool accumulate = false );
/** @brief Calculates the back projection of a histogram.
The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to
cv::calcHist , at each location (x, y) the function collects the values from the selected channels
in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
statistics, the function computes probability of each element value in respect with the empirical
probability distribution represented by the histogram. See how, for example, you can find and track
a bright-colored object in a scene:
- Before tracking, show the object to the camera so that it covers almost the whole frame.
Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
colors in the object.
- When tracking, calculate a back projection of a hue plane of each input video frame using that
pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
- Find connected components in the resulting picture and choose, for example, the largest
component.
This is an approximate algorithm of the CamShift color object tracker.
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
size. Each of them can have an arbitrary number of channels.
@param nimages Number of source images.
@param channels The list of channels used to compute the back projection. The number of channels
must match the histogram dimensionality. The first array channels are numerated from 0 to
images[0].channels()-1 , the second array channels are counted from images[0].channels() to
images[0].channels() + images[1].channels()-1, and so on.
@param hist Input histogram that can be dense or sparse.
@param backProject Destination back projection array that is a single-channel array of the same
size and depth as images[0] .
@param ranges Array of arrays of the histogram bin boundaries in each dimension. See cv::calcHist .
@param scale Optional scale factor for the output back projection.
@param uniform Flag indicating whether the histogram is uniform or not (see above).
@sa cv::calcHist, cv::compareHist
*/
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
const int* channels, InputArray hist,
OutputArray backProject, const float** ranges,
double scale = 1, bool uniform = true );
/** @overload */
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
const int* channels, const SparseMat& hist,
OutputArray backProject, const float** ranges,
double scale = 1, bool uniform = true );
/** @overload */
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
InputArray hist, OutputArray dst,
const std::vector<float>& ranges,
double scale );
/** @brief Compares two histograms.
The function cv::compareHist compares two dense or two sparse histograms using the specified method.
The function returns \f$d(H_1, H_2)\f$ .
While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
or more general sparse configurations of weighted points, consider using the cv::EMD function.
@param H1 First compared histogram.
@param H2 Second compared histogram of the same size as H1 .
@param method Comparison method, see cv::HistCompMethods
*/
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
/** @overload */
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
/** @brief Equalizes the histogram of a grayscale image.
The function equalizes the histogram of the input image using the following algorithm:
- Calculate the histogram \f$H\f$ for src .
- Normalize the histogram so that the sum of histogram bins is 255.
- Compute the integral of the histogram:
\f[H'_i = \sum _{0 \le j < i} H(j)\f]
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
The algorithm normalizes the brightness and increases the contrast of the image.
@param src Source 8-bit single channel image.
@param dst Destination image of the same size and type as src .
*/
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
/** @brief Computes the "minimal work" distance between two weighted point configurations.
The function computes the earth mover distance and/or a lower boundary of the distance between the
two weighted point configurations. One of the applications described in @cite RubnerSept98,
@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
problem that is solved using some modification of a simplex algorithm, thus the complexity is
exponential in the worst case, though, on average it is much faster. In the case of a real metric
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
to determine roughly whether the two signatures are far enough so that they cannot relate to the
same object.
@param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
a single column (weights only) if the user-defined cost matrix is used. The weights must be
non-negative and have at least one non-zero value.
@param signature2 Second signature of the same format as signature1 , though the number of rows
may be different. The total weights may be different. In this case an extra "dummy" point is added
to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
value.
@param distType Used metric. See cv::DistanceTypes.
@param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
@param lowerBound Optional input/output parameter: lower boundary of a distance between the two
signatures that is a distance between mass centers. The lower boundary may not be calculated if
the user-defined cost matrix is used, the total weights of point configurations are not equal, or
if the signatures consist of weights only (the signature matrices have a single column). You
**must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
equal to \*lowerBound (it means that the signatures are far enough), the function does not
calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
should be set to 0.
@param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
*/
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
int distType, InputArray cost=noArray(),
float* lowerBound = 0, OutputArray flow = noArray() );
//! @} imgproc_hist
/** @example watershed.cpp
An example using the watershed algorithm
*/
/** @brief Performs a marker-based image segmentation using the watershed algorithm.
The function implements one of the variants of watershed, non-parametric marker-based segmentation
algorithm, described in @cite Meyer92 .
Before passing the image to the function, you have to roughly outline the desired regions in the
image markers with positive (\>0) indices. So, every region is represented as one or more connected
components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
mask using findContours and drawContours (see the watershed.cpp demo). The markers are "seeds" of
the future image regions. All the other pixels in markers , whose relation to the outlined regions
is not known and should be defined by the algorithm, should be set to 0's. In the function output,
each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
regions.
@note Any two neighbor connected components are not necessarily separated by a watershed boundary
(-1's pixels); for example, they can touch each other in the initial marker image passed to the
function.
@param image Input 8-bit 3-channel image.
@param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
size as image .
@sa findContours
@ingroup imgproc_misc
*/
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
//! @addtogroup imgproc_filter
//! @{
/** @brief Performs initial step of meanshift segmentation of an image.
The function implements the filtering stage of meanshift segmentation, that is, the output of the
function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
considered:
\f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f]
where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
(though, the algorithm does not depend on the color space used, so any 3-component color space can
be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
(R',G',B') are found and they act as the neighborhood center on the next iteration:
\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
After the iterations over, the color components of the initial pixel (that is, the pixel from where
the iterations started) are set to the final value (average color at the last iteration):
\f[I(X,Y) <- (R*,G*,B*)\f]
When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
run on the smallest layer first. After that, the results are propagated to the larger layer and the
iterations are run again only on those pixels where the layer colors differ by more than sr from the
lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
results will be actually different from the ones obtained by running the meanshift procedure on the
whole original image (i.e. when maxLevel==0).
@param src The source 8-bit, 3-channel image.
@param dst The destination image of the same format and the same size as the source.
@param sp The spatial window radius.
@param sr The color window radius.
@param maxLevel Maximum level of the pyramid for the segmentation.
@param termcrit Termination criteria: when to stop meanshift iterations.
*/
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
double sp, double sr, int maxLevel = 1,
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
//! @}
//! @addtogroup imgproc_misc
//! @{
/** @example grabcut.cpp
An example using the GrabCut algorithm
*/
/** @brief Runs the GrabCut algorithm.
The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
@param img Input 8-bit 3-channel image.
@param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
mode is set to GC_INIT_WITH_RECT. Its elements may have one of the cv::GrabCutClasses.
@param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
"obvious background". The parameter is only used when mode==GC_INIT_WITH_RECT .
@param bgdModel Temporary array for the background model. Do not modify it while you are
processing the same image.
@param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
processing the same image.
@param iterCount Number of iterations the algorithm should make before returning the result. Note
that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or
mode==GC_EVAL .
@param mode Operation mode that could be one of the cv::GrabCutModes
*/
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
InputOutputArray bgdModel, InputOutputArray fgdModel,
int iterCount, int mode = GC_EVAL );
/** @example distrans.cpp
An example on using the distance transform\
*/
/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
The function cv::distanceTransform calculates the approximate or precise distance from every binary
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
When maskSize == DIST_MASK_PRECISE and distanceType == DIST_L2 , the function runs the
algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
distance is calculated as a sum of these basic distances. Since the distance function should be
symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
same cost (denoted as `c`). For the cv::DIST_C and cv::DIST_L1 types, the distance is calculated
precisely, whereas for cv::DIST_L2 (Euclidean distance) the distance can be calculated only with a
relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
uses the values suggested in the original paper:
- DIST_L1: `a = 1, b = 2`
- DIST_L2:
- `3 x 3`: `a=0.955, b=1.3693`
- `5 x 5`: `a=1, b=1.4, c=2.1969`
- DIST_C: `a = 1, b = 1`
Typically, for a fast, coarse distance estimation DIST_L2, a \f$3\times 3\f$ mask is used. For a
more accurate distance estimation DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
Note that both the precise and the approximate algorithms are linear on the number of pixels.
This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
but also identifies the nearest connected component consisting of zero pixels
(labelType==DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index of the
component/pixel is stored in `labels(x, y)`. When labelType==DIST_LABEL_CCOMP, the function
automatically finds connected components of zero pixels in the input image and marks them with
distinct labels. When labelType==DIST_LABEL_CCOMP, the function scans through the input image and
marks all the zero pixels with distinct labels.
In this mode, the complexity is still linear. That is, the function provides a very fast way to
compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
approximate distance transform algorithm, i.e. maskSize=DIST_MASK_PRECISE is not supported
yet.
@param src 8-bit, single-channel (binary) source image.
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
single-channel image of the same size as src.
@param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
CV_32SC1 and the same size as src.
@param distanceType Type of distance, see cv::DistanceTypes
@param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks.
DIST_MASK_PRECISE is not supported by this variant. In case of the DIST_L1 or DIST_C distance type,
the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
5\f$ or any larger aperture.
@param labelType Type of the label array to build, see cv::DistanceTransformLabelTypes.
*/
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
OutputArray labels, int distanceType, int maskSize,
int labelType = DIST_LABEL_CCOMP );
/** @overload
@param src 8-bit, single-channel (binary) source image.
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
single-channel image of the same size as src .
@param distanceType Type of distance, see cv::DistanceTypes
@param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks. In case of the
DIST_L1 or DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
the same result as \f$5\times 5\f$ or any larger aperture.
@param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
the first variant of the function and distanceType == DIST_L1.
*/
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
int distanceType, int maskSize, int dstType=CV_32F);
/** @example ffilldemo.cpp
An example using the FloodFill technique
*/
/** @overload
variant without `mask` parameter
*/
CV_EXPORTS int floodFill( InputOutputArray image,
Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
int flags = 4 );
/** @brief Fills a connected component with the given color.
The function cv::floodFill fills a connected component starting from the seed point with the specified
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
- in case of a grayscale image and floating range
\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
- in case of a grayscale image and fixed range
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
- in case of a color image and floating range
\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
and
\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
- in case of a color image and fixed range
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
and
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
component. That is, to be added to the connected component, a color/brightness of the pixel should
be close enough to:
- Color/brightness of one of its neighbors that already belong to the connected component in case
of a floating range.
- Color/brightness of the seed point in case of a fixed range.
Use these functions to either mark a connected component with the specified color in-place, or build
a mask and then extract the contour, or copy the region to another image, and so on.
@param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
function unless the FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
the details below.
@param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
taller than image. Since this is both an input and output parameter, you must take responsibility
of initializing it. Flood-filling cannot go across non-zero pixels in the input mask. For example,
an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
mask corresponding to filled pixels in the image are set to 1 or to the a value specified in flags
as described below. It is therefore possible to use the same mask in multiple calls to the function
to make sure the filled areas do not overlap.
@param seedPoint Starting point.
@param newVal New value of the repainted domain pixels.
@param loDiff Maximal lower brightness/color difference between the currently observed pixel and
one of its neighbors belonging to the component, or a seed pixel being added to the component.
@param upDiff Maximal upper brightness/color difference between the currently observed pixel and
one of its neighbors belonging to the component, or a seed pixel being added to the component.
@param rect Optional output parameter set by the function to the minimum bounding rectangle of the
repainted domain.
@param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
neighbours and fill the mask with a value of 255. The following additional options occupy higher
bits and therefore may be further combined with the connectivity and mask fill values using
bit-wise or (|), see cv::FloodFillFlags.
@note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
pixel \f$(x+1, y+1)\f$ in the mask .
@sa findContours
*/
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
int flags = 4 );
/** @brief Converts an image from one color space to another.
The function converts an input image from one color space to another. In case of a transformation
to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
The conventional ranges for R, G, and B channel values are:
- 0 to 255 for CV_8U images
- 0 to 65535 for CV_16U images
- 0 to 1 for CV_32F images
In case of linear transformations, the range does not matter. But in case of a non-linear
transformation, an input RGB image should be normalized to the proper value range to get the correct
results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
have the 0..255 value range instead of 0..1 assumed by the function. So, before calling cvtColor ,
you need first to scale the image down:
@code
img *= 1./255;
cvtColor(img, img, COLOR_BGR2Luv);
@endcode
If you use cvtColor with 8-bit images, the conversion will have some information lost. For many
applications, this will not be noticeable but it is recommended to use 32-bit images in applications
that need the full range of colors or that convert an image before an operation and then convert
back.
If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
@param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
floating-point.
@param dst output image of the same size and depth as src.
@param code color space conversion code (see cv::ColorConversionCodes).
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the
channels is derived automatically from src and code.
@see @ref imgproc_color_conversions
*/
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
//! @} imgproc_misc
// main function for all demosaicing procceses
CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0);
//! @addtogroup imgproc_shape
//! @{
/** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
results are returned in the structure cv::Moments.
@param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
\f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ).
@param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
used for images only.
@returns moments.
@note Only applicable to contour moments calculations from Python bindings: Note that the numpy
type for the input array should be either np.int32 or np.float32.
@sa contourArea, arcLength
*/
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
/** @brief Calculates seven Hu invariants.
The function calculates seven Hu invariants (introduced in @cite Hu62; see also
<http://en.wikipedia.org/wiki/Image_moment>) defined as:
\f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f]
where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ .
These values are proved to be invariants to the image scale, rotation, and reflection except the
seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
infinite image resolution. In case of raster images, the computed Hu invariants for the original and
transformed images are a bit different.
@param moments Input moments computed with moments .
@param hu Output Hu invariants.
@sa matchShapes
*/
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
/** @overload */
CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
//! @} imgproc_shape
//! @addtogroup imgproc_object
//! @{
//! type of the template matching operation
enum TemplateMatchModes {
TM_SQDIFF = 0, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f]
TM_SQDIFF_NORMED = 1, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
TM_CCORR = 2, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f]
TM_CCORR_NORMED = 3, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
TM_CCOEFF = 4, //!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f]
//!< where
//!< \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f]
TM_CCOEFF_NORMED = 5 //!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} }\f]
};
/** @brief Compares a template against overlapped image regions.
The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
templ using the specified method and stores the comparison results in result . Here are the formulae
for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ template, \f$R\f$ result ). The summation
is done over template and/or the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
After the function finishes the comparison, the best matches can be found as global minimums (when
TM_SQDIFF was used) or maximums (when TM_CCORR or TM_CCOEFF was used) using the
minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
the denominator is done over all of the channels and separate mean values are used for each channel.
That is, the function can take a color template and a color image. The result will still be a
single-channel image, which is easier to analyze.
@param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
@param templ Searched template. It must be not greater than the source image and have the same
data type.
@param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
@param method Parameter specifying the comparison method, see cv::TemplateMatchModes
@param mask Mask of searched template. It must have the same datatype and size with templ. It is
not set by default.
*/
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
OutputArray result, int method, InputArray mask = noArray() );
//! @}
//! @addtogroup imgproc_shape
//! @{
/** @brief computes the connected components labeled image of boolean image
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
represents the background label. ltype specifies the output label image type, an important
consideration based on the total number of labels or alternatively the total number of pixels in
the source image. ccltype specifies the connected components labeling algorithm to use, currently
Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes
for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not.
@param image the 8-bit single-channel image to be labeled
@param labels destination labeled image
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
@param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes).
*/
CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels,
int connectivity, int ltype, int ccltype);
/** @overload
@param image the 8-bit single-channel image to be labeled
@param labels destination labeled image
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
*/
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
int connectivity = 8, int ltype = CV_32S);
/** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
represents the background label. ltype specifies the output label image type, an important
consideration based on the total number of labels or alternatively the total number of pixels in
the source image. ccltype specifies the connected components labeling algorithm to use, currently
Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes
for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not.
@param image the 8-bit single-channel image to be labeled
@param labels destination labeled image
@param stats statistics output for each label, including the background label, see below for
available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
cv::ConnectedComponentsTypes. The data type is CV_32S.
@param centroids centroid output for each label, including the background label. Centroids are
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
@param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes).
*/
CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels,
OutputArray stats, OutputArray centroids,
int connectivity, int ltype, int ccltype);
/** @overload
@param image the 8-bit single-channel image to be labeled
@param labels destination labeled image
@param stats statistics output for each label, including the background label, see below for
available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
cv::ConnectedComponentsTypes. The data type is CV_32S.
@param centroids centroid output for each label, including the background label. Centroids are
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
*/
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
OutputArray stats, OutputArray centroids,
int connectivity = 8, int ltype = CV_32S);
/** @brief Finds contours in a binary image.
The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
OpenCV sample directory.
@note Since opencv 3.2 source image is not modified by this function.
@param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
pixels remain 0's, so the image is treated as binary . You can use cv::compare, cv::inRange, cv::threshold ,
cv::adaptiveThreshold, cv::Canny, and others to create a binary image out of a grayscale or color one.
If mode equals to cv::RETR_CCOMP or cv::RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
@param contours Detected contours. Each contour is stored as a vector of points (e.g.
std::vector<std::vector<cv::Point> >).
@param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
as many elements as the number of contours. For each i-th contour contours[i], the elements
hierarchy[i][0] , hiearchy[i][1] , hiearchy[i][2] , and hiearchy[i][3] are set to 0-based indices
in contours of the next and previous contours at the same hierarchical level, the first child
contour and the parent contour, respectively. If for the contour i there are no next, previous,
parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
@param mode Contour retrieval mode, see cv::RetrievalModes
@param method Contour approximation method, see cv::ContourApproximationModes
@param offset Optional offset by which every contour point is shifted. This is useful if the
contours are extracted from the image ROI and then they should be analyzed in the whole image
context.
*/
CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
OutputArray hierarchy, int mode,
int method, Point offset = Point());
/** @overload */
CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
int mode, int method, Point offset = Point());
/** @brief Approximates a polygonal curve(s) with the specified precision.
The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
vertices so that the distance between them is less or equal to the specified precision. It uses the
Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
@param curve Input vector of a 2D point stored in std::vector or Mat
@param approxCurve Result of the approximation. The type should match the type of the input curve.
@param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
between the original curve and its approximation.
@param closed If true, the approximated curve is closed (its first and last vertices are
connected). Otherwise, it is not closed.
*/
CV_EXPORTS_W void approxPolyDP( InputArray curve,
OutputArray approxCurve,
double epsilon, bool closed );
/** @brief Calculates a contour perimeter or a curve length.
The function computes a curve length or a closed contour perimeter.
@param curve Input vector of 2D points, stored in std::vector or Mat.
@param closed Flag indicating whether the curve is closed or not.
*/
CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
/** @brief Calculates the up-right bounding rectangle of a point set.
The function calculates and returns the minimal up-right bounding rectangle for the specified point set.
@param points Input 2D point set, stored in std::vector or Mat.
*/
CV_EXPORTS_W Rect boundingRect( InputArray points );
/** @brief Calculates a contour area.
The function computes a contour area. Similarly to moments , the area is computed using the Green
formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
drawContours or fillPoly , can be different. Also, the function will most certainly give a wrong
results for contours with self-intersections.
Example:
@code
vector<Point> contour;
contour.push_back(Point2f(0, 0));
contour.push_back(Point2f(10, 0));
contour.push_back(Point2f(10, 10));
contour.push_back(Point2f(5, 4));
double area0 = contourArea(contour);
vector<Point> approx;
approxPolyDP(contour, approx, 5, true);
double area1 = contourArea(approx);
cout << "area0 =" << area0 << endl <<
"area1 =" << area1 << endl <<
"approx poly vertices" << approx.size() << endl;
@endcode
@param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
@param oriented Oriented area flag. If it is true, the function returns a signed area value,
depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
determine orientation of a contour by taking the sign of an area. By default, the parameter is
false, which means that the absolute value is returned.
*/
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
specified point set. See the OpenCV sample minarea.cpp . Developer should keep in mind that the
returned rotatedRect can contain negative indices when data is close to the containing Mat element
boundary.
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
*/
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
The function finds the four vertices of a rotated rectangle. This function is useful to draw the
rectangle. In C++, instead of using this function, you can directly use box.points() method. Please
visit the [tutorial on bounding
rectangle](http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html#bounding-rects-circles)
for more information.
@param box The input rotated rectangle. It may be the output of
@param points The output array of four vertices of rectangles.
*/
CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
/** @brief Finds a circle of the minimum area enclosing a 2D point set.
The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. See
the OpenCV sample minarea.cpp .
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
@param center Output center of the circle.
@param radius Output radius of the circle.
*/
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
CV_OUT Point2f& center, CV_OUT float& radius );
/** @example minarea.cpp
*/
/** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
*red* and the enclosing triangle in *yellow*.
![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
enclosing triangle of a 2D convex polygon with n vertices. Since the minEnclosingTriangle function
takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
2D point set is required. The complexity of the convexHull function is \f$O(n log(n))\f$ which is higher
than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
@param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
@param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
of the OutputArray must be CV_32F.
*/
CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
/** @brief Compares two shapes.
The function compares two shapes. All three implemented methods use the Hu invariants (see cv::HuMoments)
@param contour1 First contour or grayscale image.
@param contour2 Second contour or grayscale image.
@param method Comparison method, see ::ShapeMatchModes
@param parameter Method-specific parameter (not supported now).
*/
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
int method, double parameter );
/** @example convexhull.cpp
An example using the convexHull functionality
*/
/** @brief Finds the convex hull of a point set.
The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
that has *O(N logN)* complexity in the current implementation. See the OpenCV sample convexhull.cpp
that demonstrates the usage of different function variants.
@param points Input 2D point set, stored in std::vector or Mat.
@param hull Output convex hull. It is either an integer vector of indices or vector of points. In
the first case, the hull elements are 0-based indices of the convex hull points in the original
array (since the set of convex hull points is a subset of the original point set). In the second
case, hull elements are the convex hull points themselves.
@param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
to the right, and its Y axis pointing upwards.
@param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
output array is std::vector, the flag is ignored, and the output depends on the type of the
vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
returnPoints=true.
*/
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
bool clockwise = false, bool returnPoints = true );
/** @brief Finds the convexity defects of a contour.
The figure below displays convexity defects of a hand contour:
![image](pics/defects.png)
@param contour Input contour.
@param convexhull Convex hull obtained using convexHull that should contain indices of the contour
points that make the hull.
@param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
interface each convexity defect is represented as 4-element integer vector (a.k.a. cv::Vec4i):
(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
in the original contour of the convexity defect beginning, end and the farthest point, and
fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
farthest contour point and the hull. That is, to get the floating-point value of the depth will be
fixpt_depth/256.0.
*/
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
/** @brief Tests a contour convexity.
The function tests whether the input contour is convex or not. The contour must be simple, that is,
without self-intersections. Otherwise, the function output is undefined.
@param contour Input vector of 2D points, stored in std::vector\<\> or Mat
*/
CV_EXPORTS_W bool isContourConvex( InputArray contour );
//! finds intersection of two convex polygons
CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2,
OutputArray _p12, bool handleNested = true );
/** @example fitellipse.cpp
An example using the fitEllipse technique
*/
/** @brief Fits an ellipse around a set of 2D points.
The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
is used. Developer should keep in mind that it is possible that the returned
ellipse/rotatedRect data contains negative indices, due to the data points being close to the
border of the containing Mat element.
@param points Input 2D point set, stored in std::vector\<\> or Mat
*/
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
/** @brief Fits a line to a 2D or 3D point set.
The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
of the following:
- DIST_L2
\f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f]
- DIST_L1
\f[\rho (r) = r\f]
- DIST_L12
\f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
- DIST_FAIR
\f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f]
- DIST_WELSCH
\f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f]
- DIST_HUBER
\f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
@param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
@param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
and (x0, y0, z0) is a point on the line.
@param distType Distance used by the M-estimator, see cv::DistanceTypes
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
is chosen.
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
*/
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
double param, double reps, double aeps );
/** @brief Performs a point-in-contour test.
The function determines whether the point is inside a contour, outside, or lies on an edge (or
coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
Otherwise, the return value is a signed distance between the point and the nearest contour edge.
See below a sample output of the function where each image pixel is tested against the contour:
![sample output](pics/pointpolygon.png)
@param contour Input contour.
@param pt Point tested against the contour.
@param measureDist If true, the function estimates the signed distance from the point to the
nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
*/
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
/** @brief Finds out if there is any intersection between two rotated rectangles.
If there is then the vertices of the interesecting region are returned as well.
Below are some examples of intersection configurations. The hatched pattern indicates the
intersecting region and the red vertices are returned by the function.
![intersection examples](pics/intersection.png)
@param rect1 First rectangle
@param rect2 Second rectangle
@param intersectingRegion The output array of the verticies of the intersecting region. It returns
at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
@returns One of cv::RectanglesIntersectTypes
*/
CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion );
//! @} imgproc_shape
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Detects position only without traslation and rotation
CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
//! Detects position, traslation and rotation
CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
//! Performs linear blending of two images
CV_EXPORTS void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
//! @addtogroup imgproc_colormap
//! @{
//! GNU Octave/MATLAB equivalent colormaps
enum ColormapTypes
{
COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
COLORMAP_PARULA = 12 //!< ![parula](pics/colormaps/colorscale_parula.jpg)
};
/** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
@param dst The result is the colormapped source image. Note: Mat::create is called on dst.
@param colormap The colormap to apply, see cv::ColormapTypes
*/
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
//! @} imgproc_colormap
//! @addtogroup imgproc_draw
//! @{
/** @brief Draws a line segment connecting two points.
The function line draws the line segment between pt1 and pt2 points in the image. The line is
clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
lines are drawn using Gaussian filtering.
@param img Image.
@param pt1 First point of the line segment.
@param pt2 Second point of the line segment.
@param color Line color.
@param thickness Line thickness.
@param lineType Type of the line, see cv::LineTypes.
@param shift Number of fractional bits in the point coordinates.
*/
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0);
/** @brief Draws a arrow segment pointing from the first point to the second one.
The function arrowedLine draws an arrow between pt1 and pt2 points in the image. See also cv::line.
@param img Image.
@param pt1 The point the arrow starts from.
@param pt2 The point the arrow points to.
@param color Line color.
@param thickness Line thickness.
@param line_type Type of the line, see cv::LineTypes
@param shift Number of fractional bits in the point coordinates.
@param tipLength The length of the arrow tip in relation to the arrow length
*/
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
/** @brief Draws a simple, thick, or filled up-right rectangle.
The function rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
are pt1 and pt2.
@param img Image.
@param pt1 Vertex of the rectangle.
@param pt2 Vertex of the rectangle opposite to pt1 .
@param color Rectangle color or brightness (grayscale image).
@param thickness Thickness of lines that make up the rectangle. Negative values, like CV_FILLED ,
mean that the function has to draw a filled rectangle.
@param lineType Type of the line. See the line description.
@param shift Number of fractional bits in the point coordinates.
*/
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
/** @overload
use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
r.br()-Point(1,1)` are opposite corners
*/
CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
/** @brief Draws a circle.
The function circle draws a simple or filled circle with a given center and radius.
@param img Image where the circle is drawn.
@param center Center of the circle.
@param radius Radius of the circle.
@param color Circle color.
@param thickness Thickness of the circle outline, if positive. Negative thickness means that a
filled circle is to be drawn.
@param lineType Type of the circle boundary. See the line description.
@param shift Number of fractional bits in the coordinates of the center and in the radius value.
*/
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
The function cv::ellipse with less parameters draws an ellipse outline, a filled ellipse, an elliptic
arc, or a filled ellipse sector. A piecewise-linear curve is used to approximate the elliptic arc
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
ellipse2Poly and then render it with polylines or fill it with fillPoly . If you use the first
variant of the function and want to draw the whole ellipse, not an arc, pass startAngle=0 and
endAngle=360 . The figure below explains the meaning of the parameters.
![Parameters of Elliptic Arc](pics/ellipse.png)
@param img Image.
@param center Center of the ellipse.
@param axes Half of the size of the ellipse main axes.
@param angle Ellipse rotation angle in degrees.
@param startAngle Starting angle of the elliptic arc in degrees.
@param endAngle Ending angle of the elliptic arc in degrees.
@param color Ellipse color.
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
a filled ellipse sector is to be drawn.
@param lineType Type of the ellipse boundary. See the line description.
@param shift Number of fractional bits in the coordinates of the center and values of axes.
*/
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
double angle, double startAngle, double endAngle,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
/** @overload
@param img Image.
@param box Alternative ellipse representation via RotatedRect. This means that the function draws
an ellipse inscribed in the rotated rectangle.
@param color Ellipse color.
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
a filled ellipse sector is to be drawn.
@param lineType Type of the ellipse boundary. See the line description.
*/
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
int thickness = 1, int lineType = LINE_8);
/* ----------------------------------------------------------------------------------------- */
/* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */
/* ----------------------------------------------------------------------------------------- */
//! Possible set of marker types used for the cv::drawMarker function
enum MarkerTypes
{
MARKER_CROSS = 0, //!< A crosshair marker shape
MARKER_TILTED_CROSS = 1, //!< A 45 degree tilted crosshair marker shape
MARKER_STAR = 2, //!< A star marker shape, combination of cross and tilted cross
MARKER_DIAMOND = 3, //!< A diamond marker shape
MARKER_SQUARE = 4, //!< A square marker shape
MARKER_TRIANGLE_UP = 5, //!< An upwards pointing triangle marker shape
MARKER_TRIANGLE_DOWN = 6 //!< A downwards pointing triangle marker shape
};
/** @brief Draws a marker on a predefined position in an image.
The function drawMarker draws a marker on a given position in the image. For the moment several
marker types are supported, see cv::MarkerTypes for more information.
@param img Image.
@param position The point where the crosshair is positioned.
@param color Line color.
@param markerType The specific type of marker you want to use, see cv::MarkerTypes
@param thickness Line thickness.
@param line_type Type of the line, see cv::LineTypes
@param markerSize The length of the marker axis [default = 20 pixels]
*/
CV_EXPORTS_W void drawMarker(CV_IN_OUT Mat& img, Point position, const Scalar& color,
int markerType = MARKER_CROSS, int markerSize=20, int thickness=1,
int line_type=8);
/* ----------------------------------------------------------------------------------------- */
/* END OF MARKER SECTION */
/* ----------------------------------------------------------------------------------------- */
/** @overload */
CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts,
const Scalar& color, int lineType = LINE_8,
int shift = 0);
/** @brief Fills a convex polygon.
The function fillConvexPoly draws a filled convex polygon. This function is much faster than the
function cv::fillPoly . It can fill not only convex polygons but any monotonic polygon without
self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
twice at the most (though, its top-most and/or the bottom edge could be horizontal).
@param img Image.
@param points Polygon vertices.
@param color Polygon color.
@param lineType Type of the polygon boundaries. See the line description.
@param shift Number of fractional bits in the vertex coordinates.
*/
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
const Scalar& color, int lineType = LINE_8,
int shift = 0);
/** @overload */
CV_EXPORTS void fillPoly(Mat& img, const Point** pts,
const int* npts, int ncontours,
const Scalar& color, int lineType = LINE_8, int shift = 0,
Point offset = Point() );
/** @brief Fills the area bounded by one or more polygons.
The function fillPoly fills an area bounded by several polygonal contours. The function can fill
complex areas, for example, areas with holes, contours with self-intersections (some of their
parts), and so forth.
@param img Image.
@param pts Array of polygons where each polygon is represented as an array of points.
@param color Polygon color.
@param lineType Type of the polygon boundaries. See the line description.
@param shift Number of fractional bits in the vertex coordinates.
@param offset Optional offset of all points of the contours.
*/
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
const Scalar& color, int lineType = LINE_8, int shift = 0,
Point offset = Point() );
/** @overload */
CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts,
int ncontours, bool isClosed, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0 );
/** @brief Draws several polygonal curves.
@param img Image.
@param pts Array of polygonal curves.
@param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
the function draws a line from the last vertex of each curve to its first vertex.
@param color Polyline color.
@param thickness Thickness of the polyline edges.
@param lineType Type of the line segments. See the line description.
@param shift Number of fractional bits in the vertex coordinates.
The function polylines draws one or more polygonal curves.
*/
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
bool isClosed, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0 );
/** @example contours2.cpp
An example using the drawContour functionality
*/
/** @example segment_objects.cpp
An example using drawContours to clean up a background segmentation result
*/
/** @brief Draws contours outlines or filled contours.
The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
connected components from the binary image and label them: :
@code
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
using namespace std;
int main( int argc, char** argv )
{
Mat src;
// the first command-line parameter must be a filename of the binary
// (black-n-white) image
if( argc != 2 || !(src=imread(argv[1], 0)).data)
return -1;
Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
src = src > 1;
namedWindow( "Source", 1 );
imshow( "Source", src );
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours( src, contours, hierarchy,
RETR_CCOMP, CHAIN_APPROX_SIMPLE );
// iterate through all the top-level contours,
// draw each connected component with its own random color
int idx = 0;
for( ; idx >= 0; idx = hierarchy[idx][0] )
{
Scalar color( rand()&255, rand()&255, rand()&255 );
drawContours( dst, contours, idx, color, FILLED, 8, hierarchy );
}
namedWindow( "Components", 1 );
imshow( "Components", dst );
waitKey(0);
}
@endcode
@param image Destination image.
@param contours All the input contours. Each contour is stored as a point vector.
@param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
@param color Color of the contours.
@param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
thickness=CV_FILLED ), the contour interiors are drawn.
@param lineType Line connectivity. See cv::LineTypes.
@param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
some of the contours (see maxLevel ).
@param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
parameter is only taken into account when there is hierarchy available.
@param offset Optional contour shift parameter. Shift all the drawn contours by the specified
\f$\texttt{offset}=(dx,dy)\f$ .
*/
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
int contourIdx, const Scalar& color,
int thickness = 1, int lineType = LINE_8,
InputArray hierarchy = noArray(),
int maxLevel = INT_MAX, Point offset = Point() );
/** @brief Clips the line against the image rectangle.
The function cv::clipLine calculates a part of the line segment that is entirely within the specified
rectangle. it returns false if the line segment is completely outside the rectangle. Otherwise,
it returns true .
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
@param pt1 First line point.
@param pt2 Second line point.
*/
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
/** @overload
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
@param pt1 First line point.
@param pt2 Second line point.
*/
CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2);
/** @overload
@param imgRect Image rectangle.
@param pt1 First line point.
@param pt2 Second line point.
*/
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
/** @brief Approximates an elliptic arc with a polyline.
The function ellipse2Poly computes the vertices of a polyline that approximates the specified
elliptic arc. It is used by cv::ellipse.
@param center Center of the arc.
@param axes Half of the size of the ellipse main axes. See the ellipse for details.
@param angle Rotation angle of the ellipse in degrees. See the ellipse for details.
@param arcStart Starting angle of the elliptic arc in degrees.
@param arcEnd Ending angle of the elliptic arc in degrees.
@param delta Angle between the subsequent polyline vertices. It defines the approximation
accuracy.
@param pts Output vector of polyline vertices.
*/
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
int arcStart, int arcEnd, int delta,
CV_OUT std::vector<Point>& pts );
/** @overload
@param center Center of the arc.
@param axes Half of the size of the ellipse main axes. See the ellipse for details.
@param angle Rotation angle of the ellipse in degrees. See the ellipse for details.
@param arcStart Starting angle of the elliptic arc in degrees.
@param arcEnd Ending angle of the elliptic arc in degrees.
@param delta Angle between the subsequent polyline vertices. It defines the approximation
accuracy.
@param pts Output vector of polyline vertices.
*/
CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle,
int arcStart, int arcEnd, int delta,
CV_OUT std::vector<Point2d>& pts);
/** @brief Draws a text string.
The function putText renders the specified text string in the image. Symbols that cannot be rendered
using the specified font are replaced by question marks. See getTextSize for a text rendering code
example.
@param img Image.
@param text Text string to be drawn.
@param org Bottom-left corner of the text string in the image.
@param fontFace Font type, see cv::HersheyFonts.
@param fontScale Font scale factor that is multiplied by the font-specific base size.
@param color Text color.
@param thickness Thickness of the lines used to draw a text.
@param lineType Line type. See the line for details.
@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
it is at the top-left corner.
*/
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
int fontFace, double fontScale, Scalar color,
int thickness = 1, int lineType = LINE_8,
bool bottomLeftOrigin = false );
/** @brief Calculates the width and height of a text string.
The function getTextSize calculates and returns the size of a box that contains the specified text.
That is, the following code renders some text, the tight box surrounding it, and the baseline: :
@code
String text = "Funny text inside the box";
int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
double fontScale = 2;
int thickness = 3;
Mat img(600, 800, CV_8UC3, Scalar::all(0));
int baseline=0;
Size textSize = getTextSize(text, fontFace,
fontScale, thickness, &baseline);
baseline += thickness;
// center the text
Point textOrg((img.cols - textSize.width)/2,
(img.rows + textSize.height)/2);
// draw the box
rectangle(img, textOrg + Point(0, baseline),
textOrg + Point(textSize.width, -textSize.height),
Scalar(0,0,255));
// ... and the baseline first
line(img, textOrg + Point(0, thickness),
textOrg + Point(textSize.width, thickness),
Scalar(0, 0, 255));
// then put the text itself
putText(img, text, textOrg, fontFace, fontScale,
Scalar::all(255), thickness, 8);
@endcode
@param text Input text string.
@param fontFace Font to use, see cv::HersheyFonts.
@param fontScale Font scale factor that is multiplied by the font-specific base size.
@param thickness Thickness of lines used to render the text. See putText for details.
@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
point.
@return The size of a box that contains the specified text.
@see cv::putText
*/
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
double fontScale, int thickness,
CV_OUT int* baseLine);
/** @brief Line iterator
The class is used to iterate over all the pixels on the raster line
segment connecting two specified points.
The class LineIterator is used to get each pixel of a raster line. It
can be treated as versatile implementation of the Bresenham algorithm
where you can stop at each pixel and do some extra processing, for
example, grab pixel values along the line or draw a line with an effect
(for example, with XOR operation).
The number of pixels along the line is stored in LineIterator::count.
The method LineIterator::pos returns the current position in the image:
@code{.cpp}
// grabs pixels along the line (pt1, pt2)
// from 8-bit 3-channel image to the buffer
LineIterator it(img, pt1, pt2, 8);
LineIterator it2 = it;
vector<Vec3b> buf(it.count);
for(int i = 0; i < it.count; i++, ++it)
buf[i] = *(const Vec3b)*it;
// alternative way of iterating through the line
for(int i = 0; i < it2.count; i++, ++it2)
{
Vec3b val = img.at<Vec3b>(it2.pos());
CV_Assert(buf[i] == val);
}
@endcode
*/
class CV_EXPORTS LineIterator
{
public:
/** @brief intializes the iterator
creates iterators for the line connecting pt1 and pt2
the line will be clipped on the image boundaries
the line is 8-connected or 4-connected
If leftToRight=true, then the iteration is always done
from the left-most point to the right most,
not to depend on the ordering of pt1 and pt2 parameters
*/
LineIterator( const Mat& img, Point pt1, Point pt2,
int connectivity = 8, bool leftToRight = false );
/** @brief returns pointer to the current pixel
*/
uchar* operator *();
/** @brief prefix increment operator (++it). shifts iterator to the next pixel
*/
LineIterator& operator ++();
/** @brief postfix increment operator (it++). shifts iterator to the next pixel
*/
LineIterator operator ++(int);
/** @brief returns coordinates of the current pixel
*/
Point pos() const;
uchar* ptr;
const uchar* ptr0;
int step, elemSize;
int err, count;
int minusDelta, plusDelta;
int minusStep, plusStep;
};
//! @cond IGNORED
// === LineIterator implementation ===
inline
uchar* LineIterator::operator *()
{
return ptr;
}
inline
LineIterator& LineIterator::operator ++()
{
int mask = err < 0 ? -1 : 0;
err += minusDelta + (plusDelta & mask);
ptr += minusStep + (plusStep & mask);
return *this;
}
inline
LineIterator LineIterator::operator ++(int)
{
LineIterator it = *this;
++(*this);
return it;
}
inline
Point LineIterator::pos() const
{
Point p;
p.y = (int)((ptr - ptr0)/step);
p.x = (int)(((ptr - ptr0) - p.y*step)/elemSize);
return p;
}
//! @endcond
//! @} imgproc_draw
//! @} imgproc
} // cv
#ifndef DISABLE_OPENCV_24_COMPATIBILITY
#include "opencv2/imgproc/imgproc_c.h"
#endif
#endif
|