summaryrefslogtreecommitdiff
path: root/sci_gateway1/cpp/opencv_goodfeaturestotrack.cpp
blob: 79e614fc2f65f48d9bd1fa3982d2efb90b520369 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/********************************************************
    Author: Abhilasha Sancheti & Sukul Bagai
*********************************************************
   corner_points = goodFeaturesToTrack( input_image, maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector((1 for true)/(0 for false)),k );
********************************************************/


// Abhilasha Sancheti
// sample input :   
//output: (image , corners)
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
#include <math.h>
using namespace cv;
using namespace std;
extern "C"
{
  #include "api_scilab.h"
  #include "Scierror.h"
  #include "BOOL.h"
  #include <localization.h>
  #include <sciprint.h>
  #include "../common.h"
  
  int opencv_goodfeaturestotrack(char *fname, unsigned long fname_len)
  {

    SciErr sciErr;
    int intErr=0;
    int iRows=0,iCols=0;
    int *piAddrNew = NULL;
    int *piAddr2  = NULL;
    int *piAddr3  = NULL;
    int *piAddr4  = NULL;
    int *piAddr5  = NULL;
    int *piAddr6  = NULL;
    int *piAddr7  = NULL;
    
    int i,j, detector;
    double maxCorners  ,qualityLevel,minDistance,blocksize=3 ,k=0.04, usedetector;
    bool useHarrisDetector = false;
    
    //checking input argument
    CheckInputArgument(pvApiCtx, 7, 7);
    CheckOutputArgument(pvApiCtx, 1, 1) ;
    Mat image;
    retrieveImage(image,1);
    
    //for maximum corners
    sciErr = getVarAddressFromPosition(pvApiCtx,2,&piAddr2);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr2 ,&maxCorners);
    if(intErr)
        return intErr;
     
     
    //for qualityLevel
    sciErr = getVarAddressFromPosition(pvApiCtx,3,&piAddr3);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr3,&qualityLevel);
   if(intErr)
        return intErr;

   //for minDistance
     sciErr = getVarAddressFromPosition(pvApiCtx,4,&piAddr4);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr4 ,&minDistance);
    if(intErr)
       return intErr;
   

   //for blocksize
    sciErr = getVarAddressFromPosition(pvApiCtx,5,&piAddr5);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr5 ,&blocksize);
   if(intErr)
     return intErr;

    //for Harrisusedetector taking integer 1 or 0 
      sciErr = getVarAddressFromPosition(pvApiCtx,6,&piAddr6);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr6,&usedetector);
    if(intErr)
        return intErr;
     detector=(int)usedetector;
   
  //for k value
  sciErr = getVarAddressFromPosition(pvApiCtx,7,&piAddr7);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr7 ,&k);
   if(intErr)
        return intErr;
     

     //checking the input parameter usedetector
    if (detector == 1)
      useHarrisDetector = true;
    else if(detector == 0)
      useHarrisDetector = false;
    else
    {
      sciprint("Either 1 or 0 , 0 value was used instead");
      useHarrisDetector = false;
    }

    /// processing of the input image and other parameters
 if( maxCorners < 1 ) { maxCorners = 1; sciprint("maxcorners cannot be less than 1 , using 1 instead");}

  /// Parameters for Shi-Tomasi algorithm
  
  vector<Point2f> corners;
  /// Copy the source image
  Mat src_gray;
  cvtColor( image, src_gray, CV_BGR2GRAY );
  /// Apply corner detection
  goodFeaturesToTrack( src_gray,corners,maxCorners,qualityLevel,minDistance,Mat(),blocksize,useHarrisDetector,k );
  
  int row = corners.size();
  double *cor = (double *)malloc(2*row*sizeof(double *));
  for (int i=0;i<row;i++)
  {
      *(cor + i*2 + 0)=corners[i].x;
      *(cor + i*2 + 1)=corners[i].y;
  }
      
    
  sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, row, 2, cor);
  if(sciErr.iErr)
  {
      printError(&sciErr, 0);
      return 0;
  }
  //Assigning the list as the Output Variable
  AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
 
  //Returning the Output Variables as arguments to the Scilab environment
  ReturnArguments(pvApiCtx);
  return 0;
}
/* ==================================================================== */
}