1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
/********************************************************
Author: Shubheksha Jalan
*********************************************************
Mat getGaussianKernel(int ksize, double sigma, int ktype=CV_64F )
********************************************************/
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C"
{
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include <sciprint.h>
#include "../common.h"
int opencv_getgaussiankernel(char *fname, unsigned long fname_len)
{
SciErr sciErr;
int intErr=0;
int iRows=0,iCols=0;
int *piLen = NULL;
int *piAddr = NULL;
int *piAddrNew = NULL;
int *piAddr2 = NULL;
int *piAddr3 = NULL;
double ksize, sigma;
char **kType = NULL;
int i, j, k;
//checking input argument
CheckInputArgument(pvApiCtx, 3, 3);
CheckOutputArgument(pvApiCtx, 1, 1) ;
//for value of ksize
sciErr = getVarAddressFromPosition(pvApiCtx, 1, &piAddr);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
intErr = getScalarDouble(pvApiCtx, piAddr, &ksize);
if(intErr || ksize < 0 || (int) ksize % 2 == 0)
{
return intErr;
}
//for first value of size
sciErr = getVarAddressFromPosition(pvApiCtx,2,&piAddr2);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
intErr = getScalarDouble(pvApiCtx, piAddr2, &sigma);
if(intErr)
{
return intErr;
}
sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Now, we will retrieve the string from the input parameter. For this, we will require 3 calls
//first call to retrieve dimensions
sciErr = getMatrixOfString(pvApiCtx, piAddr3, &iRows, &iCols, NULL, NULL);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
piLen = (int*)malloc(sizeof(int) * iRows * iCols);
//second call to retrieve length of each string
sciErr = getMatrixOfString(pvApiCtx, piAddr3, &iRows, &iCols, piLen, NULL);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
kType = (char**)malloc(sizeof(char*) * iRows * iCols);
for(i = 0 ; i < iRows * iCols ; i++)
kType[i] = (char*)malloc(sizeof(char) * (piLen[i] + 1));//+ 1 for null termination
//third call to retrieve data
sciErr = getMatrixOfString(pvApiCtx, piAddr3, &iRows, &iCols, piLen, kType);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
Mat temp;
if(strcmp(kType[0], "CV_32F") == 0)
temp = getGaussianKernel(ksize, sigma, CV_32F
);
else if(strcmp(kType[0], "CV_64F") == 0)
temp = getGaussianKernel(ksize, sigma, CV_64F);
double *m = (double *)malloc(temp.rows*temp.cols*sizeof(double));
for(i=0;i<temp.rows;i++)
{
for(j=0;j<temp.cols;j++)
{
uchar intensity = temp.at<uchar>(i, j);
*(m + i*temp.cols + j) = intensity;
}
}
sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, temp.rows, temp.cols, m);
//Assigning the list as the Output Variable
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
//Returning the Output Variables as arguments to the Scilab environment
ReturnArguments(pvApiCtx);
return 0;
}
/* ==================================================================== */
}
|