1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
/********************************************************************************************************************************************************************************************************
* Author: Umang Agrawal *
* Code: detectMSERFeatures.cpp *
* Function Format: [ list_pixels, ......] = detectMSERFeatures( image, Optional Arguments........) *
* Input Arguments: 1. Image (Grayscale or RGB) *
* 2. ThresholdDelta Value: (0:100] Expressed in Percentage *
* 3. RegionAreaRange Value: [ Min_Area , Max_Area ] *
* 4. MaxAreaVariation Value: Scalar Double typical range from 0.25 - 4 *
* 5. ROI Value: [ x_cord , y_cord , width , height ] *
* *
* Output Argument: 1. List Of Pixels stating the Locus of all features detected *
* 2. Count *
* 3. Location: Centroid of each Locus *
* 4. Axes: Major and Minor axis length of ellipse *
* 5. Orientation: Tilt of the elliptical fit *
* *
********************************************************************************************************************************************************************************************************/
#include <iostream>
#include <numeric>
#include <vector>
#include <string>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
extern "C"
{
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include "sciprint.h"
#include "../common.h"
int opencv_detectMSERFeatures(char *fname, unsigned long fname_len)
{
//Various Declarations
//Error Variables
SciErr sciErr;
int sca_read;
//Mat containers for image
Mat image;
Mat cropped;
//Address of Various Arguments
int *piAddr = NULL;
int *piAddr2 = NULL;
int *piAddr3 = NULL;
int inp_params, out_params; //Count of Parameters
double arg_val; //Memory for Scalar Argument Value
int Rows, Cols; //Rows and Columns for Matrix Argument Value
double *roi_arg = NULL; //Memory for Matrix Argument Value
int *pilen = NULL; //For String Matrix Reading: Length of String
char **arg = NULL; //For String Matrix Reading: String
int count_area = 0, count_tres = 0, count_var = 0, count_roi = 0; //Count of all the optional Arguments
double x = 0, y = 0, width = 0, height = 0; //Initials of all Cropped Varaibles
int i,j; //Iterator
int delta = 5, min_area = 60, max_area = 14400, max_evolution = 200, edge_blur_size = 5; //Arguments of MSER function with default values
double max_variation = 0.25, min_diversity = 0.2, area_threshold = 1.01, min_margin = 0.003; //Arguments of MSER function with default values
double *pixellist = NULL; //Output Argument Pixellist
int count[1] ; //Output Argument Count
double *location = NULL; //Output Argument Location
double *axes = NULL; //Output Argument Axes
double *orientation = NULL; //Output Argument Orientation
vector< vector<Point> > mser_points; //3D vector for storing the locus of each detected feature
vector< RotatedRect > regions; //RotatedRect vector for storing each region associated with a feature
CheckInputArgument(pvApiCtx, 1, 9); //Check on Number of Input Arguments
CheckOutputArgument(pvApiCtx, 1, 5); //Check on Number of Output Arguments
//Read Image
retrieveImage(image, 1);
//Getting Number of Input Arguments
inp_params = *getNbInputArgument(pvApiCtx);
//Based on the number of Input Arguments, alter the arguments of the MSER funtion.
for(i=2; i<=inp_params; i++)
{
if( inp_params == 2 || inp_params == 4 || inp_params == 6 || inp_params == 8)
{
Scierror(999,"Either Argument Name or its Value missing\n");
return 0;
}
//Reading the Name of the Argument
sciErr = getVarAddressFromPosition(pvApiCtx, i, &piAddr2);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Check for Argument type
if( !isStringType(pvApiCtx, piAddr2))
{
Scierror(999, "%s: Wrong type of argument #%d. A string is expected.\n", fname, 1);
return 0;
}
//Matrix of Stings
sciErr = getMatrixOfString(pvApiCtx, piAddr2, &Rows, &Cols, NULL, NULL);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
pilen = (int*)malloc(sizeof(int) * Rows * Cols);
//second call to retrieve the length of the string
sciErr = getMatrixOfString(pvApiCtx, piAddr2, &Rows, &Cols, pilen, NULL);
if(sciErr.iErr)
{
printError(&sciErr, 0);
free(pilen);
return 0;
}
arg = (char**)malloc(sizeof(char*) * Rows * Cols);
for(int j=0;j< Rows * Cols; j++)
{
arg[j] = (char*)malloc(sizeof(char) * (pilen[j] + 1));
}
//third call to retrieve data
sciErr = getMatrixOfString(pvApiCtx, piAddr2, &Rows, &Cols, pilen, arg);
if(sciErr.iErr)
{
printError(&sciErr, 0);
free(pilen);
free(arg);
return 0;
}
if(strcmp(arg[0],"ThresholdDelta") == 0)
{
if(count_tres == 0)
{
sciErr = getVarAddressFromPosition(pvApiCtx, i+1, &piAddr3);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Checking the type of value
if( !isDoubleType(pvApiCtx, piAddr3))
{
Scierror(999,"Not a valid type of value.\n");
return 0;
}
//Reading the Value of the argument
sca_read = getScalarDouble(pvApiCtx, piAddr3, &arg_val);
if(sca_read)
{
Scierror(999,"Not a valid value.\n");
return 0;
}
//Check for valid range
if(arg_val <= 0 && arg_val > 100)
{
Scierror(999,"Not a valid range.Should be between 0 and 100.\n");
return 0;
}
delta = arg_val;
i++;
count_tres += 1;
}
else
{
Scierror(999,"ThresholdDelta has been specified twice.Check the Arguments\n");
return 0;
}
}
else if(strcmp(arg[0],"RegionAreaRange") == 0)
{
if(count_area == 0)
{
sciErr = getVarAddressFromPosition(pvApiCtx, i+1, &piAddr3);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Checking the type of argument
if( !(isDoubleType(pvApiCtx, piAddr3) || isIntegerType(pvApiCtx, piAddr3)) )
{
Scierror(999,"Not a valid type of value.\n");
return 0;
}
//Reading the Value of the argument
sciErr = getMatrixOfDouble(pvApiCtx, piAddr3, &Rows, &Cols, &roi_arg);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
if( Rows*Cols != 2 )
{
Scierror(999,"Only 2 values are expected.Neither less nor more\n");
return 0;
}
if( roi_arg[0] >= roi_arg[1] )
{
Scierror(999,"Max Area should be greater than Min Area\n");
return 0;
}
//Assigning the elements of the list to their proper function
min_area = roi_arg[0];
max_area = roi_arg[1];
i++;
count_area += 1;
}
else
{
Scierror(999,"RegionAreaRange has been specified twice.Check the Arguments\n");
return 0;
}
}
else if(strcmp(arg[0],"MaxAreaVariation") == 0)
{
if(count_var == 0)
{
sciErr = getVarAddressFromPosition(pvApiCtx, i+1, &piAddr3);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Checking the type of value
if( !isDoubleType(pvApiCtx, piAddr3))
{
Scierror(999,"Not a valid type of value.\n");
return 0;
}
//Reading the Value of the argument
sca_read = getScalarDouble(pvApiCtx, piAddr3, &arg_val);
if(sca_read)
{
Scierror(999,"Not a valid value.\n");
return 0;
}
max_variation = arg_val;
i++;
count_var += 1;
}
else
{
Scierror(999,"MaxAreaVariation has been specified twice.Check the Arguments\n");
return 0;
}
}
else if(strcmp(arg[0],"ROI") == 0)
{
if(count_roi == 0)
{
sciErr = getVarAddressFromPosition(pvApiCtx, i+1, &piAddr3);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Checking the type of argument
if( !(isDoubleType(pvApiCtx, piAddr3) || isIntegerType(pvApiCtx, piAddr3)) )
{
Scierror(999,"Not a valid type of value.\n");
return 0;
}
//Reading the Value of the argument
sciErr = getMatrixOfDouble(pvApiCtx, piAddr3, &Rows, &Cols, &roi_arg);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
if( Rows*Cols != 4 )
{
Scierror(999,"Expected 4 arguments in format [x,y,width,height]\n");
return 0;
}
//Assigning the elements of the list to their proper function
x = roi_arg[0];
y = roi_arg[1];
width = roi_arg[2];
height = roi_arg[3];
if(x>=image.cols || y>=image.rows || x<0 || y<0)
{
sciprint("Invalid x or y value\n");
return 0;
}
if(width<=0 || height<=0 || x+width > image.cols || y+height > image.rows)
{
sciprint("Invalid width or height value\n");
return 0;
}
Rect myROI(x, y, width, height);
Mat croppedRef(image, myROI);
croppedRef.copyTo(cropped);
i++; //Incrementing iterator to count for the value argument read
count_roi += 1; //Indicating ROI has been called once
}
else
{
Scierror(999,"ROI has been specified twice.Check the Arguments\n");
return 0;
}
}
else
{
Scierror(999,"Invalid Argument\n");
return 0;
}
}
//Creating an MSER class Object with specified conditions
MSER img_ms = MSER(delta, min_area, max_area, max_variation, min_diversity, max_evolution, area_threshold, min_margin, edge_blur_size);
//Checking if have to operate on original image or cropped one
// 1st Argument: Image on which MSER features has to be detected
// 2nd Argument: Locus of all the points detected
// 3rd Argument: Mask of empty Mat container
if(count_roi == 0)
img_ms( image, mser_points, Mat());
else
img_ms( cropped, mser_points, Mat());
// Extracting Regions from the mser_points locus and approximating them to an elliptic fit
for(i=0; i<mser_points.size(); i++)
regions.push_back(fitEllipse(mser_points[i]));
//Memory Allocation for all the output parameters
location = (double *)malloc(sizeof(double) * mser_points.size() * 2);
axes = (double *)malloc(sizeof(double) * mser_points.size() * 2);
orientation = (double *)malloc(sizeof(double) * mser_points.size());
//Output Arguments: Pixel_list, Count, Location, Axes, Orientation
count[0] = mser_points.size(); //Count
for(i=0; i<mser_points.size(); i++)
{
location[i] = regions[i].center.x + x; //Location X co-ordinate
location[mser_points.size() + i] = regions[i].center.y + y; //Location Y co-ordinate
if( regions[i].size.width >= regions[i].size.height )
{
axes[i] = regions[i].size.width; //Axis: Major Axis of Ellipse
axes[mser_points.size() + i] = regions[i].size.height; //Axis: Minor Axis of Ellipse
}
else
{
axes[i] = regions[i].size.height; //Axis: Major Axis of Ellipse
axes[mser_points.size() + i] = regions[i].size.width; //Axis: Minor Axis of Ellipse
}
orientation[i] = regions[i].angle; //Orientation
}
//Reading the number of output Arguments user demands
//Assigning Pixel_List
out_params = *getNbOutputArgument(pvApiCtx);
if( out_params >= 1 )
{
sciErr = createList(pvApiCtx, nbInputArgument(pvApiCtx) + 1, mser_points.size(), &piAddr);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
for(i = 0; i<mser_points.size(); i++)
{
pixellist = (double *)malloc(sizeof(double) * mser_points[i].size() * 2);
for( j=0; j<mser_points[i].size(); j++)
{
pixellist[j] = mser_points[i][j].x + x;
pixellist[mser_points[i].size() + j] = mser_points[i][j].y + y;
}
sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx) + 1, piAddr, i+1, mser_points[i].size(), 2, pixellist);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
free(pixellist);
}
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
}
//Assigning Count
if( out_params >= 2 )
{
sciErr = createMatrixOfInteger32(pvApiCtx, nbInputArgument(pvApiCtx) + 2, 1, 1, count);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
AssignOutputVariable(pvApiCtx, 2) = nbInputArgument(pvApiCtx) + 2;
}
//Assigning Location
if( out_params >= 3 )
{
sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 3, mser_points.size(), 2, location);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
AssignOutputVariable(pvApiCtx, 3) = nbInputArgument(pvApiCtx) + 3;
}
//Assigning Axes
if( out_params >= 4 )
{
sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 4, mser_points.size(), 2, axes);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
AssignOutputVariable(pvApiCtx, 4) = nbInputArgument(pvApiCtx) + 4;
}
//Assigning Orientation
if( out_params == 5 )
{
sciErr = createMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 5, mser_points.size(), 1, orientation);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
AssignOutputVariable(pvApiCtx, 5) = nbInputArgument(pvApiCtx) + 5;
}
//Releasing all the memory Captured
free(location);
free(axes);
free(orientation);
//Returning the Output Arguments
ReturnArguments(pvApiCtx);
return 0;
}
}
|