summaryrefslogtreecommitdiff
path: root/sci_gateway1/cpp/opencv_Deinterlacer.cpp
blob: 04db27f464192927f178494b68e9962346124fe7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/********************************************************
Author: Deepshikha
return_image = Deinterlacer(source_image)
********************************************************/

#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
#include <vector>

using namespace cv;
using namespace std;

extern "C"{
	#include "api_scilab.h"
	#include "Scierror.h"
	#include "BOOL.h"
  #include <localization.h>
  #include <sciprint.h>
  #include "../common.h"
  
  int opencv_Deinterlacer(char *fname, unsigned long fname_len){

    /// Error management variable
    SciErr sciErr;
    
    /// Variables
    	int i, j, k , ch;
    	int iRows=0;
    	int iCols=0;
    	int *piAddr2=NULL;
    	int *piLen = 0;
    	
    	// to specify deinterlacing method
    	char **method=NULL;

    	/// checking input argument
    	CheckInputArgument(pvApiCtx, 1, 2);
   		CheckOutputArgument(pvApiCtx, 1, 1);

    	vector <uint> v;

    	Mat image;
    	retrieveImage(image, 1);

   		/// new_image contains deinterlaced image of original image
    	Mat new_image(image.rows, image.cols, image.type());

    	int nbInputArguments = *getNbInputArgument(pvApiCtx);
    	if(nbInputArguments == 2)
    	{
      	sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr2);
      	if(sciErr.iErr)
    		{
      		printError(&sciErr, 0);
      		return 0;
        }
      	/// Retrieve string from input parameter. (requires 3 calls)
      	/// first to retrieve dimensions
      	sciErr = getMatrixOfString(pvApiCtx, piAddr2, &iRows, &iCols, NULL, NULL);
      	if(sciErr.iErr)
      	{
        	printError(&sciErr, 0);
        	return 0;
      	}
    
        //second call to retrieve length of each string    
      	piLen = (int*)malloc(sizeof(int) * iRows * iCols);
      	sciErr = getMatrixOfString(pvApiCtx, piAddr2, &iRows, &iCols, piLen, NULL);
      	if(sciErr.iErr)
      	{
       		printError(&sciErr, 0);
        	return 0;
      	}

      	method = (char**)malloc(sizeof(char*) * iRows * iCols);
      	for(i = 0 ; i < iRows * iCols ; i++)
        method[i] = (char*)malloc(sizeof(char) * (piLen[i] + 1));//+ 1 for null termination

      	//third call to retrieve data
      	sciErr = getMatrixOfString(pvApiCtx, piAddr2, &iRows, &iCols, piLen, method);
      	if(sciErr.iErr)
      	{
        	printError(&sciErr, 0);
        	return 0;
      	}
      		
      	// if second argument, method is Linear interpolation
      	if(strcmp(method[0],"Linear interpolation")==0)
      	{
        	for(i = 0; i < image.rows; i++)
        	{
        		for(j = 0; j < image.cols; j++)
        		{
           		if(i == image.rows-1)
            	{
              	if(i%2!=0)
                	new_image.at <uint> (i,j) = image.at <uint> (i-1,j);
              	else
                	new_image.at <uint> (i,j) = image.at <uint> (i,j);
            	}
            	else if(i%2 != 0 and i+1 < image.rows and i-1 >= 0)
              	new_image.at <uint> (i,j) = ( image.at <uint> (i-1,j) + image.at <uint> (i+1,j) ) / 2;
            	else
              	new_image.at <uint> (i,j) = image.at <uint> (i,j);
          	}
        	}
      	}

        // if second argument, method is Vertical temporal median filtering
      	else if(strcmp(method[0],"Vertical temporal median filtering")==0)
      	{
        	for(i = 0; i < image.rows; i++)
        	{
        		for(j = 0;j < image.cols; j++)
          	{
            	v.clear();
            	if(i == image.rows-1)
            	{
              	if(i%2!=0)
                  new_image.at <uint> (i,j) = image.at <uint> (i-1,j);
              	else
                  new_image.at <uint> (i,j) = image.at <uint> (i,j);
            	}
            	else if(i%2 != 0 and i-1 >= 0 and i+1 < image.rows)
            	{
              	v.push_back( image.at <uint> (i-1,j) );
              	v.push_back( image.at <uint> (i,j) );
              	v.push_back( image.at <uint> (i+1,j) );

              	sort( v.begin(),v.end() ); // to find median 

              	new_image.at <uint> (i,j) = v[1];
            	}
            	else
              	new_image.at <uint> (i,j) = image.at <uint> (i,j);
          	}
        	}
      	}
        
        // if second argument, method is Line repetition
        else if(strcmp(method[0],"Line repetition")==0)
        {
          for( i = 0; i < image.rows; i++ )
          {
            for(j = 0; j < image.cols; j++ )
            {
              if( i == image.rows-1 and i%2!=0 )
                new_image.at <uint> (i,j,k) = image.at <uint> (i,j,k);
              if( i%2 != 0 and i-1 >=0 )
                new_image.at <uint> (i,j,k) = image.at <uint> (i-1,j,k);
              else
                new_image.at <uint> (i,j, k) = image.at<uint> (i,j,k);
            }
          }
        }
      	// if any other invalid method name is passed as argument
        else
        {
          Scierror(99,"Wrong method specified, use Linear interpolation or Vertical temporal median filtering or Line repetition as method name \n");
          return 0;
        }
      }

		  // if no of input argument is 1 that is no method is specified then we use Line repetition method by default
      else
    	{
        for( i = 0; i < image.rows; i++ )
      	{
        	for(j = 0; j < image.cols; j++ )
        	{
          	if( i == image.rows-1 and i%2!=0 )
            	new_image.at <uint> (i,j,k) = image.at <uint> (i,j,k);
          	if( i%2 != 0 and i-1 >=0 )
            	new_image.at <uint> (i,j,k) = image.at <uint> (i-1,j,k);
          	else
            	new_image.at <uint> (i,j, k) = image.at<uint> (i,j,k);
        	}
      	}
     	}
    
      // writing to scilab memory
      string tempstring = type2str(new_image.type());
      char *checker;
      checker = (char *)malloc(tempstring.size() + 1);
      memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
      returnImage(checker, new_image, 1);
      free(checker);

      //Assigning the list as the Output Variable
      AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;

      //Returning the Output Variables as arguments to the Scilab environment
      ReturnArguments(pvApiCtx);
      return 0;
  }
/* ==================================================================== */
}