summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/opencv_wiener2.cpp
blob: 802d9cecd93b0feb32dbece9b7cb7bf413255945 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Created By: Riddhish Bhalodia
Date: 14th October 2015

Usage:

void wiener2(Mat img,int n, double sigma)

1)  img   : Input image, grayscale only
2)  n     : filt size
3)  sigma : noise var, if sigma = 0 then the variance is estimated from data

*/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C"
{
  #include "api_scilab.h"
  #include "Scierror.h"
  #include "BOOL.h"
  #include <localization.h>
  #include "sciprint.h"
  #include "../common.h"

  int opencv_wiener2(char *fname, unsigned long fname_len){
	
	SciErr sciErr;
    int intErr = 0;
    int iRows=0,iCols=0;
    int *piAddr = NULL;
    int *piAddrNew = NULL;
    int *piAddr2  = NULL;
    int *piAddr3  = NULL;
    double n;
    double sigma;
    
    
	Mat img;
    //checking input argument
    CheckInputArgument(pvApiCtx, 3, 3);
    CheckOutputArgument(pvApiCtx, 1, 1) ;
	
	retrieveImage(img, 1);
	//for value of the scale factor
    sciErr = getVarAddressFromPosition(pvApiCtx,2,&piAddr2);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr2, &n);
    if(intErr)
    {
        return intErr;
    }   

    sciErr = getVarAddressFromPosition(pvApiCtx,3,&piAddr3);
    if (sciErr.iErr)
    {
        printError(&sciErr, 0);
        return 0;
    }
    intErr = getScalarDouble(pvApiCtx, piAddr3, &sigma);
    if(intErr)
    {
        return intErr;
    }   

    // The error checks for the function
    if(n != round(n) || n<=0 || int(n)%2==0)
    {
        sciprint("The value of n must be an odd integer \n");
        return 0;
    }

    Mat out = Mat::zeros(img.size(),img.type());
	sigma=255*255*sigma;
	if(img.channels() !=1){
		sciprint("Grayscale images only!");
		return 0;
	}
	
		int i_min,i_max,j_min,j_max;
		int w = (n-1)/2;

		if(sigma==0){
			double noise_est = 0;
			for(int i=0;i<img.rows;i++){
				for(int j=0;j<img.cols;j++){
					i_min = max(i-w,0);
			        i_max = min(i+w,img.rows-1);
			        j_min = max(j-w,0);
			        j_max = min(j+w,img.cols-1);

			        // find mean of the patch
			        double mean = 0;
			        for(int ii=i_min;ii<(i_max+1);ii++){
			        	for(int jj=j_min;jj<(j_max+1);jj++){
			        		mean = mean + ((double)img.at<uchar>(ii,jj));

			        	}
			        }
			        mean = mean/(n*n);
			        
			        double var=0;
			        for(int ii=i_min;ii<(i_max+1);ii++){
			        	for(int jj=j_min;jj<(j_max+1);jj++){
			        		var = var + ((double)img.at<uchar>(ii,jj))*((double)img.at<uchar>(ii,jj));
			        	}
			        }
			        var = var/(n*n);
			        var = var - mean*mean;
			        noise_est = noise_est + var;
				}
			}
			noise_est = noise_est/(img.rows*img.cols);
			sigma = noise_est;
		}

		for(int i=0;i<img.rows;i++){
			for(int j=0;j<img.cols;j++){
				i_min = max(i-w,0);
		        i_max = min(i+w,img.rows-1);
		        j_min = max(j-w,0);
		        j_max = min(j+w,img.cols-1);

		        // find mean of the patch
		        double mean = 0;
		        for(int ii=i_min;ii<(i_max+1);ii++){
		        	for(int jj=j_min;jj<(j_max+1);jj++){
		        		mean = mean + ((double)img.at<uchar>(ii,jj));

		        	}
		        }
		        mean = mean/(n*n);

		        // find variance of the patch
		        double var=0;
		        for(int ii=i_min;ii<(i_max+1);ii++){
		        	for(int jj=j_min;jj<(j_max+1);jj++){
		        		var = var + ((double)img.at<uchar>(ii,jj))*((double)img.at<uchar>(ii,jj));
		        	}
		        }
		        var = var/(n*n);
		        var = var - mean*mean;
		        
		        double temp;
		        double sum=0;
		        
		       	temp = mean + (fmax(0,(var - sigma))/fmax(var,sigma))*(((double)img.at<uchar>(i,j)) - mean);
		        out.at<uchar>(i,j) = temp;
			}
		}
		
	
	// out is the return image
	string tempstring = type2str(out.type());
    char *checker;
    checker = (char *)malloc(tempstring.size() + 1);
    memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
    returnImage(checker,out,1);
    free(checker); 
    //Assigning the list as the Output Variable
    AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;

    ReturnArguments(pvApiCtx);
    return 0;


  }
}