1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
/*
* integralImage
*
* integralImage in scilab
*
*/
// Created by Samiran Roy, mail: samiranroy@cse.iitb.ac.in
// An implementation of integralImage method of matlab
// Usage:
// integralImage(I) : Calculate the integral image of I, I must be grayscale
// method : 'upright' (default)
// method : 'rotated' The area sums are calulated over a rectangle, which is rotated 45 degrees
// Known Changes from Matlab:
/*
* 1) None, as of now
*/
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C" {
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include "sciprint.h"
#include "../common.h"
int opencv_integralImage(char *fname, unsigned long fname_len) {
SciErr sciErr;
int intErr = 0;
int *piAddr1 = NULL;
int error;
// String holding the second argument
int iRet = 0;
char* pstData = NULL;
// Checking input argument
CheckInputArgument(pvApiCtx, 1, 2);
CheckOutputArgument(pvApiCtx, 1, 1);
// Get input image
Mat image;
retrieveImage(image, 1);
for (int i = 0; i < image.rows; i++) {
for (int j = 0; j < image.cols; j++) {
sciprint("%f ", image.at<double>(i,j));
}
sciprint("\n");
}
// Error Checks
if (image.channels() > 1) {
sciprint("The image must be grayscale.");
return 0;
}
// Output variables holding integralImage, squared integralImage, integralImage over rectangle rotated by 45 degrees
Mat new_image, integralimage, squaredimage, rotatedimage;
integral(image, integralimage, squaredimage, rotatedimage, -1);
// Get the number of input arguments
int inputarg = *getNbInputArgument(pvApiCtx);
if (inputarg == 1)
integralimage.copyTo(new_image);
if (inputarg == 2)
{
sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr1);
if (sciErr.iErr) {
printError(&sciErr, 0);
return 0;
}
if (isStringType(pvApiCtx, piAddr1)) {
if (isScalar(pvApiCtx, piAddr1)) {
iRet = getAllocatedSingleString(pvApiCtx, piAddr1, &pstData);
}
}
if (strcmp(pstData, "rotated") == 0) {
rotatedimage.copyTo(new_image);
} else if (strcmp(pstData, "upright") == 0) {
integralimage.copyTo(new_image);
} else {
sciprint("Unknown Parameter Name:%s\n", pstData);
}
}
// sciprint("\n");
// for (int i = 0; i < new_image.rows; i++) {
// for (int j = 0; j < new_image.cols; j++) {
// sciprint("%f ", new_image.at<double>(i,j));
// }
// sciprint("\n");
// }
// new_image is sent to scilab as output
int temp = nbInputArgument(pvApiCtx) + 1;
string tempstring = type2str(new_image.type());
char *checker;
checker = (char *) malloc(tempstring.size() + 1);
memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
returnImage(checker, new_image, 1);
free(checker);
//Assigning the list as the Output Variable
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
//Returning the Output Variables as arguments to the Scilab environment
ReturnArguments (pvApiCtx);
return 0;
}
/* ==================================================================== */
}
|