1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
/********************************************************
Author: Vinay
Function: ind2rgb(image, colormap)
********************************************************/
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C"
{
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include "sciprint.h"
#include "../common.h"
int opencv_ind2rgb(char *fname, unsigned long fname_len)
{
SciErr sciErr;
int intErr = 0;
int iRows=0,iCols=0;
int cRows=0,cCols=0;
int *piAddr = NULL;
int *piAddrNew = NULL;
int *piAddr2 = NULL;
//unsigned short int *image = NULL;
double *map = NULL;
int i,j,k;
double x, y, width, height;
//checking input argument
CheckInputArgument(pvApiCtx, 2, 2);
CheckOutputArgument(pvApiCtx, 1, 1) ;
Mat image, imgcpy;
retrieveImage(image, 1);
string tempstring = type2str(image.type());
char *imtype;
imtype = (char *)malloc(tempstring.size() + 1);
memcpy(imtype, tempstring.c_str(), tempstring.size() + 1);
bool integer;
if (strcmp(imtype,"8U")==0 || strcmp(imtype,"16U")==0) {
integer = true;
}
else if (strcmp(imtype,"32F")==0 || strcmp(imtype,"64F")==0) {
integer = false;
}
else {
sciprint("Invalid image");
return 0;
}
iRows = image.rows;
iCols = image.cols;
image.convertTo(imgcpy, CV_64F);
Mat cmap, cmapcpy;
retrieveImage(cmap, 2);
cRows = cmap.rows;
cCols = cmap.cols;
cmap.convertTo(cmapcpy, CV_64F);
for (int i=0; i<cRows; i++) {
for (int j=0; j<cCols; j++) {
if (cmapcpy.at<double>(i,j)<0 || cmapcpy.at<double>(i,j)>1) {
sciprint("Invalid colormap");
return 0;
}
}
}
double *r,*g,*b;
r=(double *)malloc(sizeof(double)*iRows*iCols);
g=(double *)malloc(sizeof(double)*iRows*iCols);
b=(double *)malloc(sizeof(double)*iRows*iCols);
int m = 0;
for (int i=0; i<iRows; i++) {
for (int j=0; j<iCols; j++) {
unsigned int temp = (unsigned int)imgcpy.at<double>(i, j);
if (temp >= cRows) {
temp = cRows - 1;
}
if (!integer) {
if (temp!=0) {temp-=1;}
}
r[i + iRows*j] = cmapcpy.at<double>(temp, 0);
g[i + iRows*j] = cmapcpy.at<double>(temp, 1);
b[i + iRows*j] = cmapcpy.at<double>(temp, 2);
}
}
sciErr = createList(pvApiCtx, nbInputArgument(pvApiCtx) + 1, 3, &piAddrNew);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Adding the R value matrix to the list
//Syntax : createMatrixOfInteger32InList(void* _pvCtx, int _iVar, int* _piParent, int _iItemPos, int _iRows, int _iCols, const int* _piData)
sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+1 , piAddrNew, 1,iRows, iCols, r);
free(r);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Adding the G value matrix to the list
sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+1 , piAddrNew, 2,iCols, iRows, g);
free(g);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
//Adding the B value matrix to the list
sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+1 , piAddrNew, 3, iCols, iRows, b);
free(b);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
//Returning the Output Variables as arguments to the Scilab environment
ReturnArguments(pvApiCtx);
return 0;
}
/* ==================================================================== */
}
|