1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
/********************************************************
Author: Vinay Bhat
********************************************************
Usage: return_image = deconvlucy(input_image, PSF)
return_image = deconvlucy(input_image, PSF, no_of_iterations)
********************************************************/
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C"
{
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include "sciprint.h"
#include "../common.h"
int opencv_deconvlucy(char *fname, unsigned long fname_len)
{
SciErr sciErr;
int intErr = 0;
int *piAddr = NULL;
int i;
double h;
//checking input argument
CheckInputArgument(pvApiCtx, 2, 3);
CheckOutputArgument(pvApiCtx, 1, 1);
// Get the input image from the Scilab environment
Mat image, psf;
retrieveImage(image, 1);
retrieveImage(psf, 2);
// Check if number of arguments are three,
// if so, then the number of iterations is also
// specified.
// If not, then set number of iterations as
// ten.
if (nbInputArgument(pvApiCtx) == 3)
{
// Get the address of the iterations scalar
sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
// Get the no. of iterations scalar
intErr = getScalarDouble(pvApiCtx, piAddr, &h);
if(intErr)
{
return intErr;
}
if (h < 0)
{
sciprint("Please enter a nonnegative scalar for number of iterations.\n");
return 0;
}
}
else
h = 10;
// Check if the input image is grayscale or not,
// if not, convert it to grayscale.
if (image.type() != CV_8UC1)
{
Mat temp;
temp = image.clone();
cvtColor(temp, image, CV_BGR2GRAY);
}
// Check if the PSF is grayscale or not,
// if not, convert it to grayscale.
if (psf.type() != CV_8UC1)
{
Mat temp;
temp = psf.clone();
cvtColor(temp, psf, CV_BGR2GRAY);
}
// Apply the Lucy-Richardson method for deblurring
// an image.
Mat convRes, convRes2, temp;
temp = image.clone();
for (i = 0; i < h; i++)
{
filter2D(temp, convRes, -1, psf);
max((temp - convRes), 0, convRes2);
min((temp + convRes2), 255, convRes);
temp = convRes.clone();
}
image = temp.clone();
string tempstring = type2str(image.type());
char *checker;
checker = (char *)malloc(tempstring.size() + 1);
memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
returnImage(checker, image, 1);
free(checker);
//Assigning the list as the Output Variable
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
//Returning the Output Variables as arguments to the Scilab environment
ReturnArguments(pvApiCtx);
return 0;
}
/* ==================================================================== */
}
|