summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/opencv_corner.cpp
blob: 7502f96336559988148038e81de22cfd76e78445 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/********************************************************
Author: Tess  Zacharias
********************************************************/

#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C"
{
  #include "api_scilab.h"
  #include "Scierror.h"
  #include "BOOL.h"
  #include <localization.h>
  #include "sciprint.h"
 // #include "string.h"
  #include "../common.h"

  int opencv_corner(char *fname, unsigned long fname_len)
  {

    SciErr sciErr;
    int intErr = 0;
    int *piAddr2  = NULL;
    int *piAddr3  = NULL;
    char* pstData = NULL;
    char* pstData1 = NULL;
    int iRet    = 0;
    int iRet1    = 0;
    CheckInputArgument(pvApiCtx, 1, 3);
    CheckOutputArgument(pvApiCtx, 1, 1) ;
    Mat src,src_gray;
    int thresh = 200;
    int max_thresh = 255;
    retrieveImage(src, 1);
    cvtColor( src, src_gray, COLOR_BGR2GRAY );
    Mat dst, dst_norm, drawing;
    dst = Mat::zeros( src.size(), CV_32FC1 );
    int blockSize = 2;
    int apertureSize = 3;
    double k = 0.04;
    int maxCorners = 23;
    RNG rng(12345);
    if(nbInputArgument(pvApiCtx)==1)
    {
       cornerHarris( src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT );
       normalize( dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat() );
       convertScaleAbs( dst_norm, drawing );
       for( int j = 0; j < dst_norm.rows ; j++ )
       { 
         for( int i = 0; i < dst_norm.cols; i++ )
          {
            if( (int) dst_norm.at<float>(j,i) > thresh )
              {
               circle( drawing, Point( i, j ), 5,  Scalar(0), 2, 8, 0 );
              }
          }
        }
      }
     else if(nbInputArgument(pvApiCtx)==3)
     {
           sciErr = getVarAddressFromPosition(pvApiCtx,2,&piAddr2);
	   if(sciErr.iErr)
	   {
		printError(&sciErr, 0);
		return 0;
	   }
          if(isStringType(pvApiCtx, piAddr2))
	   {
            if(isScalar(pvApiCtx, piAddr2))
	     {
	       iRet = getAllocatedSingleString(pvApiCtx, piAddr2, &pstData);
             }
           }
         else
           {
             sciprint(" The second argument should be string  ");
             return 0;
           }
         if(strcasecmp(pstData,"Method")==0)
           {
              sciErr = getVarAddressFromPosition(pvApiCtx,3,&piAddr3);
              if (sciErr.iErr)
              {
                printError(&sciErr, 0);
                return 0;
              }
              if(isStringType(pvApiCtx, piAddr3))
	      {
                 if(isScalar(pvApiCtx, piAddr3))
	          {
	            iRet1 = getAllocatedSingleString(pvApiCtx, piAddr3, &pstData1);
                  }
             }
             else
             {
             sciprint(" The third argument should be string  ");
             return 0;
             }
             if(strcasecmp(pstData1,"Harris")==0)
             {
               cornerHarris( src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT );
               normalize( dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat() );
               convertScaleAbs( dst_norm, drawing );
               for( int j = 0; j < dst_norm.rows ; j++ )
                { 
                  for( int i = 0; i < dst_norm.cols; i++ )
                   {
                     if( (int) dst_norm.at<float>(j,i) > thresh )
                       {
                        circle( drawing, Point( i, j ), 5,  Scalar(0), 2, 8, 0 );
                       }
                   }
                 }
              }
             else  if(strcasecmp(pstData1,"MinEigenvalue")==0)
              {
                if( maxCorners < 1 ) 
                 {  
                   maxCorners = 1; 
                 }
                /// Parameters for Shi-Tomasi algorithm
                vector<Point2f> corners;
                double qualityLevel = 0.01;
                double minDistance = 10;
                int blockSize = 3;
                bool useHarrisDetector = false;
                double k = 0.04;
                /// Copy the source image
                drawing = src.clone();
                goodFeaturesToTrack( src_gray,corners,maxCorners,qualityLevel,minDistance,Mat(),blockSize,useHarrisDetector,k );
                int r = 4;
                for( int i = 0; i < corners.size(); i++ )
                 { 
                   circle( drawing, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),rng.uniform(0,255)), -1, 8, 0 );
                 }
              }
            else
              {
                  sciprint(" The third  argument must be 'Harris' or 'Mineigenvalue' ");
                  return 0;
              }
         }
        else
         {
            sciprint(" The second argument must be 'Method' ");
            return 0;
         }   
      }  
    string tempstring = type2str(drawing.type());
    char *checker;
    checker = (char *)malloc(tempstring.size() + 1);
    memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
    returnImage(checker,drawing,1);
    free(checker); 
    //Assigning the list as the Output Variable
    AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
    //Returning the Output Variables as arguments to the Scilab environment
    ReturnArguments(pvApiCtx);
    return 0;

  }
}