1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/*******************************************************************
Author : Yash S. Bhalgat
********************************************************************
Usage : T = affine2d(A);
Output: T - 3x3 matrix equivalent to tform.T matrix in Matlab output
********************************************************************/
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
extern "C"
{
#include "api_scilab.h"
#include "Scierror.h"
#include "BOOL.h"
#include <localization.h>
#include <sciprint.h>
#include "../common.h"
int opencv_affine2d(char *fname, unsigned long fname_len)
{
SciErr sciErr;
int intErr=0;
int iRows=0,iCols=0;
int *piLen = NULL;
int *piAddr1 = NULL;
char **ddepth = NULL;
int i,j,k;
double *inpMatrix;
//checking input argument
CheckInputArgument(pvApiCtx, 1, 1);
CheckOutputArgument(pvApiCtx, 1, 1) ;
//for inputMatrix
sciErr = getVarAddressFromPosition(pvApiCtx,1,&piAddr1);
if (sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
sciErr = getMatrixOfDouble(pvApiCtx, piAddr1, &iRows, &iCols ,&inpMatrix);
if(sciErr.iErr)
{
printError(&sciErr, 0);
return 0;
}
int n=iRows;
double inputMatrix[n][n];
//assigning values to actual kernelMatrix
for(i=0;i<n;i++)
for(j=0;j<n;j++)
inputMatrix[i][j]=inpMatrix[(i*n)+j];
// converting the array to a matrix, so that we can pass it into the filter2D function
Mat inpMat(n, n, CV_64FC1, &inputMatrix);
Point2f src[3];
Point2f res[3];
Point3d s1 = Point3d(0,0,1);
Point3d s2 = Point3d(10,0,1);
Point3d s3 = Point3d(0,5,1);
//cout<<s1<<endl;
Mat s = (Mat)s1;
Mat t = inpMat*s;
Mat r = t.rowRange(0, t.rows-1);
Mat ss = s.rowRange(0, s.rows-1);
src[0] = (Point2f)ss;
res[0] = (Point2f)r;
s = (Mat)s2;
t = inpMat*s;
r = t.rowRange(0, t.rows-1);
ss = s.rowRange(0, s.rows-1);
src[1] = (Point2f)ss;
res[1] = (Point2f)r;
s = (Mat)s3;
t = inpMat*s;
r = t.rowRange(0, t.rows-1);
ss = s.rowRange(0, s.rows-1);
src[2] = (Point2f)ss;
res[2] = (Point2f)r;
Mat warp_mat = getAffineTransform(src, res);
Mat outputMatrix = Mat::zeros(n, n, warp_mat.type());
Mat warp_mat_t = warp_mat.t();
for(i=0; i<3; i++)
for(j=0; j<2; j++)
outputMatrix.at<double>(i,j) = warp_mat_t.at<double>(i,j);
outputMatrix.at<double>(0,2) = 0;
outputMatrix.at<double>(1,2) = 0;
outputMatrix.at<double>(2,2) = 1.0;
//returning image
string tempstring = type2str(outputMatrix.type());
char *checker;
checker = (char *)malloc(tempstring.size() + 1);
memcpy(checker, tempstring.c_str(), tempstring.size() + 1);
returnImage(checker,outputMatrix,1);
free(checker);
//Assigning the list as the Output Variable
AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1;
//Returning the Output Variables as arguments to the Scilab environment
ReturnArguments(pvApiCtx);
return 0;
}
/* ==================================================================== */
}
|