summaryrefslogtreecommitdiff
path: root/macros/cvMean.sci
blob: ce8318ee989f78a3270fd2fd76b87331d723c25d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
//*********************************************************************//
// Author : Asmita Bhar, Kevin George
//*********************************************************************//

function [val] = cvMean(image, varargin)
// Finds mean values in an input
//
// Calling Sequence
// val = cvMean(image);
// val = cvMean(image, name, value,...);
// val = cvMean(image, name, value,c,r); (only when ROI Processing is true)
// 
// Parameters 
// image : Input image matrix
// Dimension (Output) : Dimension along which the function operates - Row, Column, All or Custom. Default : All
// CustomDimension (Optional) : The integer dimension over which the function calculates the mean. This value cannot exceed the number of dimensions in input. It applies only when 'Dimension' property is set to 'Custom'. Default : 1
// ROIProcessing (Optional) : It applies only when 'Dimension' property is set to 'All'. It calculates the mean within a particular region of the image. Default : false
// c (Optional): vector of y-coordinates of vectices of a rectangle(ROI). Applicable only when 'ROIProcssing' is set to 'true'.  
// r (Optional): vector of x-coordinates of vectices of a rectangle(ROI). Applicable only when 'ROIProcssing' is set to 'true'.
// val : Stores the mean value calculated
//
// Description
// The function calculates the mean value in a given image matrix.
//
// Examples
// //Load an image
// I = imread('peppers.png');
// //Calculate the mean (default dimension is 'All')
// val = cvMean(I);
// //Calculate the mean when dimension is 'Row'
// val = cvMean(I,'Dimension','Row');
// //Calculate the mean within a given ROI
// a = [0 100 100 0];
// b = [0 0 100 100];
// val = cvMean(I,'ROIProcessing','true',a,b);
//
// Authors
// Asmita Bhar
// Kevin George
// 
	[lhs,rhs] = argn(0);
	if rhs<1 then
		error(msprintf("Not enough input arguments"));
	end
	if rhs>9 then
		error(msprintf("Too many input arguments"));
	end
	[iRows iCols]=size(image(1))
	iChannels = size(image)

	dimension = 'All';
	customDimension = 1;
	roiProcessing = 'false';
	
	flag1=0; 
	i=1;
	while(i<rhs-1)
		if strcmpi(varargin(i),'Dimension')==0 then
			dimension = varargin(i+1)
			if strcmpi(dimension,"Column") & strcmpi(dimension,"Row") &strcmpi(dimension,"All") & strcmpi(dimension,"Custom") then
               			error(msprintf(" wrong input argument #%d, Dimension not matched",i))
            		end
			i=i+2;
		elseif strcmpi(varargin(i),'CustomDimension')==0 then
			customDimension = varargin(i+1)
			flag1=1;
			i=i+2;
		elseif strcmpi(varargin(i), 'ROIProcessing')==0 then
			roiProcessing = varargin(i+1)
			if(roiProcessing=='true') then
				c = varargin(i+2);
				r = varargin(i+3);
				i=i+4;
			else
				i=i+2;
			end
		end
		
	end
	
	if (strcmpi(dimension,'Custom') & (flag1==1))
		error(msprintf("The CustomDimension property is not relevant in this configuration"));
	end
	
	if (strcmpi(dimension,"All") & strcmpi(roiProcessing,'true'))
		error(msprintf("ROI Property is not relevant in this configuration"));
	end

	if(customDimension<1) 
		error(msprintf("CustomDimension must be greater than or equal to 1"));
	end

	if(iChannels==1) then
		if(customDimension>2)
			error(msprintf("CustomDimension cannot be greater than the dimension of the input."));
		end
	elseif(iChannels==3) then
		if(customDimension>3)
			error(msprintf("CustomDimension cannot be greater than the dimension of the input."));
		end
	end
	
	if(iChannels==1)
		I = double(image(1));
	elseif(iChannels==3)
		I1 = double(image(1));
		I2 = double(image(2));
		I3 = double(image(3));
	end

	if(roiProcessing=='false') then	
		if (dimension=='All') then
			if(iChannels==1) then
				val = mean(I)
			elseif (iChannels==3) then
				val1 = mean(I1)
				val2 = mean(I2)
				val3 = mean(I3)
				val = mean([val1 val2 val3])				
			end
		end
		if (dimension=='Row') then
			if(iChannels==1) then
				val = mean(I,'c');
			elseif(iChannels==3) then
				val1 = mean(I1,'c');
				val2 = mean(I2,'c');
				val3 = mean(I3,'c');
				val(:,:,1) = val1;
				val(:,:,2) = val2;
				val(:,:,3) = val3;
			end
		end	
		if (dimension=='Column') then
			if(iChannels==1) then
				val = mean(I,'r');
			elseif(iChannels==3) then
				val1 = mean(I1,'r');
				val2 = mean(I2,'r');
				val3 = mean(I3,'r');
				val(:,:,1) = val1;
				val(:,:,2) = val2;
				val(:,:,3) = val3;
			end
		end
		if (dimension=='Custom') then
			if(iChannels==1) then
				if(customDimension==1) then
					val = mean(I,'r');
				elseif(customDimension==2) then
					val = mean(I,'c');
				end
			elseif(iChannels==3) then
				if(customDimension==1) then
					val1 = mean(I1,'r');
					val2 = mean(I2,'r');
					val3 = mean(I3,'r');
					val(:,:,1) = val1;
					val(:,:,2) = val2;
					val(:,:,3) = val3;
				elseif(customDimension==2) then
					val1 = mean(I1,'c');
					val2 = mean(I2,'c');
					val3 = mean(I3,'c');
					val(:,:,1) = val1;
					val(:,:,2) = val2;
					val(:,:,3) = val3;
				elseif(customDimension==3) then
					for i=1:iRows
						for j=1:iCols
							val(i,j)= mean([I1(i,j) I2(i,j) I3(i,j)]);
						end

					end
				end
			end
		end
	end
	if(roiProcessing=='true') then
		I4 = roipoly(image,c,r);
		out = I4;
		output = find(out>0);		
		[rows cols] = size(out);
		if(iChannels==1)
			ROI = zeros(iRows,iCols);
			for i=1:cols
				ROI(output(i)) = image(1)(output(i));
			end
		elseif(iChannels==3)
			ROI1 = zeros(iRows,iCols);
			ROI2 = zeros(iRows,iCols);
			ROI3 = zeros(iRows,iCols);
			for i=1:cols
				ROI1(output(i)) = image(1)(output(i));
				ROI2(output(i)) = image(2)(output(i));
				ROI3(output(i)) = image(3)(output(i));
			end
			ROI = list(ROI1,ROI2,ROI3);
		end
		if (dimension=='All') then
			if(iChannels==1) then
				a=ROI;
				val = mean(a(find(a>0)));
			elseif (iChannels==3) then
				a=ROI(1);
				b=ROI(2);
				c=ROI(3);
				val1 = mean(a(find(a>0)));
				val2 = mean(b(find(b>0)));
				val3 = mean(c(find(c>0)));
				val = mean([val1 val2 val3]);
			end
		end	
	end

endfunction