diff options
Diffstat (limited to 'thirdparty1/linux/include/opencv2/video/background_segm.hpp')
-rw-r--r-- | thirdparty1/linux/include/opencv2/video/background_segm.hpp | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/video/background_segm.hpp b/thirdparty1/linux/include/opencv2/video/background_segm.hpp new file mode 100644 index 0000000..2952d57 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/video/background_segm.hpp @@ -0,0 +1,306 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_BACKGROUND_SEGM_HPP +#define OPENCV_BACKGROUND_SEGM_HPP + +#include "opencv2/core.hpp" + +namespace cv +{ + +//! @addtogroup video_motion +//! @{ + +/** @brief Base class for background/foreground segmentation. : + +The class is only used to define the common interface for the whole family of background/foreground +segmentation algorithms. + */ +class CV_EXPORTS_W BackgroundSubtractor : public Algorithm +{ +public: + /** @brief Computes a foreground mask. + + @param image Next video frame. + @param fgmask The output foreground mask as an 8-bit binary image. + @param learningRate The value between 0 and 1 that indicates how fast the background model is + learnt. Negative parameter value makes the algorithm to use some automatically chosen learning + rate. 0 means that the background model is not updated at all, 1 means that the background model + is completely reinitialized from the last frame. + */ + CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0; + + /** @brief Computes a background image. + + @param backgroundImage The output background image. + + @note Sometimes the background image can be very blurry, as it contain the average background + statistics. + */ + CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0; +}; + + +/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. + +The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004 +and @cite Zivkovic2006 . + */ +class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor +{ +public: + /** @brief Returns the number of last frames that affect the background model + */ + CV_WRAP virtual int getHistory() const = 0; + /** @brief Sets the number of last frames that affect the background model + */ + CV_WRAP virtual void setHistory(int history) = 0; + + /** @brief Returns the number of gaussian components in the background model + */ + CV_WRAP virtual int getNMixtures() const = 0; + /** @brief Sets the number of gaussian components in the background model. + + The model needs to be reinitalized to reserve memory. + */ + CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization! + + /** @brief Returns the "background ratio" parameter of the algorithm + + If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's + considered background and added to the model as a center of a new component. It corresponds to TB + parameter in the paper. + */ + CV_WRAP virtual double getBackgroundRatio() const = 0; + /** @brief Sets the "background ratio" parameter of the algorithm + */ + CV_WRAP virtual void setBackgroundRatio(double ratio) = 0; + + /** @brief Returns the variance threshold for the pixel-model match + + The main threshold on the squared Mahalanobis distance to decide if the sample is well described by + the background model or not. Related to Cthr from the paper. + */ + CV_WRAP virtual double getVarThreshold() const = 0; + /** @brief Sets the variance threshold for the pixel-model match + */ + CV_WRAP virtual void setVarThreshold(double varThreshold) = 0; + + /** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation + + Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the + existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it + is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg + value generates more components. A higher Tg value may result in a small number of components but + they can grow too large. + */ + CV_WRAP virtual double getVarThresholdGen() const = 0; + /** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation + */ + CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0; + + /** @brief Returns the initial variance of each gaussian component + */ + CV_WRAP virtual double getVarInit() const = 0; + /** @brief Sets the initial variance of each gaussian component + */ + CV_WRAP virtual void setVarInit(double varInit) = 0; + + CV_WRAP virtual double getVarMin() const = 0; + CV_WRAP virtual void setVarMin(double varMin) = 0; + + CV_WRAP virtual double getVarMax() const = 0; + CV_WRAP virtual void setVarMax(double varMax) = 0; + + /** @brief Returns the complexity reduction threshold + + This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 + is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the + standard Stauffer&Grimson algorithm. + */ + CV_WRAP virtual double getComplexityReductionThreshold() const = 0; + /** @brief Sets the complexity reduction threshold + */ + CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0; + + /** @brief Returns the shadow detection flag + + If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for + details. + */ + CV_WRAP virtual bool getDetectShadows() const = 0; + /** @brief Enables or disables shadow detection + */ + CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0; + + /** @brief Returns the shadow value + + Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 + in the mask always means background, 255 means foreground. + */ + CV_WRAP virtual int getShadowValue() const = 0; + /** @brief Sets the shadow value + */ + CV_WRAP virtual void setShadowValue(int value) = 0; + + /** @brief Returns the shadow threshold + + A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in + the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel + is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra, + *Detecting Moving Shadows...*, IEEE PAMI,2003. + */ + CV_WRAP virtual double getShadowThreshold() const = 0; + /** @brief Sets the shadow threshold + */ + CV_WRAP virtual void setShadowThreshold(double threshold) = 0; +}; + +/** @brief Creates MOG2 Background Subtractor + +@param history Length of the history. +@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model +to decide whether a pixel is well described by the background model. This parameter does not +affect the background update. +@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the +speed a bit, so if you do not need this feature, set the parameter to false. + */ +CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2> + createBackgroundSubtractorMOG2(int history=500, double varThreshold=16, + bool detectShadows=true); + +/** @brief K-nearest neigbours - based Background/Foreground Segmentation Algorithm. + +The class implements the K-nearest neigbours background subtraction described in @cite Zivkovic2006 . +Very efficient if number of foreground pixels is low. + */ +class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor +{ +public: + /** @brief Returns the number of last frames that affect the background model + */ + CV_WRAP virtual int getHistory() const = 0; + /** @brief Sets the number of last frames that affect the background model + */ + CV_WRAP virtual void setHistory(int history) = 0; + + /** @brief Returns the number of data samples in the background model + */ + CV_WRAP virtual int getNSamples() const = 0; + /** @brief Sets the number of data samples in the background model. + + The model needs to be reinitalized to reserve memory. + */ + CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization! + + /** @brief Returns the threshold on the squared distance between the pixel and the sample + + The threshold on the squared distance between the pixel and the sample to decide whether a pixel is + close to a data sample. + */ + CV_WRAP virtual double getDist2Threshold() const = 0; + /** @brief Sets the threshold on the squared distance + */ + CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0; + + /** @brief Returns the number of neighbours, the k in the kNN. + + K is the number of samples that need to be within dist2Threshold in order to decide that that + pixel is matching the kNN background model. + */ + CV_WRAP virtual int getkNNSamples() const = 0; + /** @brief Sets the k in the kNN. How many nearest neigbours need to match. + */ + CV_WRAP virtual void setkNNSamples(int _nkNN) = 0; + + /** @brief Returns the shadow detection flag + + If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for + details. + */ + CV_WRAP virtual bool getDetectShadows() const = 0; + /** @brief Enables or disables shadow detection + */ + CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0; + + /** @brief Returns the shadow value + + Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 + in the mask always means background, 255 means foreground. + */ + CV_WRAP virtual int getShadowValue() const = 0; + /** @brief Sets the shadow value + */ + CV_WRAP virtual void setShadowValue(int value) = 0; + + /** @brief Returns the shadow threshold + + A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in + the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel + is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra, + *Detecting Moving Shadows...*, IEEE PAMI,2003. + */ + CV_WRAP virtual double getShadowThreshold() const = 0; + /** @brief Sets the shadow threshold + */ + CV_WRAP virtual void setShadowThreshold(double threshold) = 0; +}; + +/** @brief Creates KNN Background Subtractor + +@param history Length of the history. +@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide +whether a pixel is close to that sample. This parameter does not affect the background update. +@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the +speed a bit, so if you do not need this feature, set the parameter to false. + */ +CV_EXPORTS_W Ptr<BackgroundSubtractorKNN> + createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0, + bool detectShadows=true); + +//! @} video_motion + +} // cv + +#endif |