summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/tracking/tracker.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty1/linux/include/opencv2/tracking/tracker.hpp')
-rw-r--r--thirdparty1/linux/include/opencv2/tracking/tracker.hpp1485
1 files changed, 1485 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/tracking/tracker.hpp b/thirdparty1/linux/include/opencv2/tracking/tracker.hpp
new file mode 100644
index 0000000..3b32033
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/tracking/tracker.hpp
@@ -0,0 +1,1485 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+ //
+ // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ //
+ // By downloading, copying, installing or using the software you agree to this license.
+ // If you do not agree to this license, do not download, install,
+ // copy or use the software.
+ //
+ //
+ // License Agreement
+ // For Open Source Computer Vision Library
+ //
+ // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+ // Third party copyrights are property of their respective owners.
+ //
+ // Redistribution and use in source and binary forms, with or without modification,
+ // are permitted provided that the following conditions are met:
+ //
+ // * Redistribution's of source code must retain the above copyright notice,
+ // this list of conditions and the following disclaimer.
+ //
+ // * Redistribution's in binary form must reproduce the above copyright notice,
+ // this list of conditions and the following disclaimer in the documentation
+ // and/or other materials provided with the distribution.
+ //
+ // * The name of the copyright holders may not be used to endorse or promote products
+ // derived from this software without specific prior written permission.
+ //
+ // This software is provided by the copyright holders and contributors "as is" and
+ // any express or implied warranties, including, but not limited to, the implied
+ // warranties of merchantability and fitness for a particular purpose are disclaimed.
+ // In no event shall the Intel Corporation or contributors be liable for any direct,
+ // indirect, incidental, special, exemplary, or consequential damages
+ // (including, but not limited to, procurement of substitute goods or services;
+ // loss of use, data, or profits; or business interruption) however caused
+ // and on any theory of liability, whether in contract, strict liability,
+ // or tort (including negligence or otherwise) arising in any way out of
+ // the use of this software, even if advised of the possibility of such damage.
+ //
+ //M*/
+
+#ifndef __OPENCV_TRACKER_HPP__
+#define __OPENCV_TRACKER_HPP__
+
+#include "opencv2/core.hpp"
+#include "opencv2/imgproc/types_c.h"
+#include "feature.hpp"
+#include "onlineMIL.hpp"
+#include "onlineBoosting.hpp"
+#include <iostream>
+
+
+#define BOILERPLATE_CODE(name,classname) \
+ static Ptr<classname> createTracker(const classname::Params &parameters=classname::Params());\
+ virtual ~classname(){};
+
+/*
+ * Partially based on:
+ * ====================================================================================================================
+ * - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
+ * - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
+ *
+ * This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
+ *
+ */
+
+namespace cv
+{
+
+//! @addtogroup tracking
+//! @{
+
+/************************************ TrackerFeature Base Classes ************************************/
+
+/** @brief Abstract base class for TrackerFeature that represents the feature.
+ */
+class CV_EXPORTS TrackerFeature
+{
+ public:
+ virtual ~TrackerFeature();
+
+ /** @brief Compute the features in the images collection
+ @param images The images
+ @param response The output response
+ */
+ void compute( const std::vector<Mat>& images, Mat& response );
+
+ /** @brief Create TrackerFeature by tracker feature type
+ @param trackerFeatureType The TrackerFeature name
+
+ The modes available now:
+
+ - "HAAR" -- Haar Feature-based
+
+ The modes that will be available soon:
+
+ - "HOG" -- Histogram of Oriented Gradients features
+ - "LBP" -- Local Binary Pattern features
+ - "FEATURE2D" -- All types of Feature2D
+ */
+ static Ptr<TrackerFeature> create( const String& trackerFeatureType );
+
+ /** @brief Identify most effective features
+ @param response Collection of response for the specific TrackerFeature
+ @param npoints Max number of features
+
+ @note This method modifies the response parameter
+ */
+ virtual void selection( Mat& response, int npoints ) = 0;
+
+ /** @brief Get the name of the specific TrackerFeature
+ */
+ String getClassName() const;
+
+ protected:
+
+ virtual bool computeImpl( const std::vector<Mat>& images, Mat& response ) = 0;
+
+ String className;
+};
+
+/** @brief Class that manages the extraction and selection of features
+
+@cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
+See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
+section 3.1 - 3.2)
+
+TrackerFeatureSet is an aggregation of TrackerFeature
+
+@sa
+ TrackerFeature
+
+ */
+class CV_EXPORTS TrackerFeatureSet
+{
+ public:
+
+ TrackerFeatureSet();
+
+ ~TrackerFeatureSet();
+
+ /** @brief Extract features from the images collection
+ @param images The input images
+ */
+ void extraction( const std::vector<Mat>& images );
+
+ /** @brief Identify most effective features for all feature types (optional)
+ */
+ void selection();
+
+ /** @brief Remove outliers for all feature types (optional)
+ */
+ void removeOutliers();
+
+ /** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
+ @param trackerFeatureType The TrackerFeature name
+
+ The modes available now:
+
+ - "HAAR" -- Haar Feature-based
+
+ The modes that will be available soon:
+
+ - "HOG" -- Histogram of Oriented Gradients features
+ - "LBP" -- Local Binary Pattern features
+ - "FEATURE2D" -- All types of Feature2D
+
+ Example TrackerFeatureSet::addTrackerFeature : :
+ @code
+ //sample usage:
+
+ Ptr<TrackerFeature> trackerFeature = new TrackerFeatureHAAR( HAARparameters );
+ featureSet->addTrackerFeature( trackerFeature );
+
+ //or add CSC sampler with default parameters
+ //featureSet->addTrackerFeature( "HAAR" );
+ @endcode
+ @note If you use the second method, you must initialize the TrackerFeature
+ */
+ bool addTrackerFeature( String trackerFeatureType );
+
+ /** @overload
+ @param feature The TrackerFeature class
+ */
+ bool addTrackerFeature( Ptr<TrackerFeature>& feature );
+
+ /** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
+ */
+ const std::vector<std::pair<String, Ptr<TrackerFeature> > >& getTrackerFeature() const;
+
+ /** @brief Get the responses
+
+ @note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses : :
+ */
+ const std::vector<Mat>& getResponses() const;
+
+ private:
+
+ void clearResponses();
+ bool blockAddTrackerFeature;
+
+ std::vector<std::pair<String, Ptr<TrackerFeature> > > features; //list of features
+ std::vector<Mat> responses; //list of response after compute
+
+};
+
+/************************************ TrackerSampler Base Classes ************************************/
+
+/** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
+sampler.
+ */
+class CV_EXPORTS TrackerSamplerAlgorithm
+{
+ public:
+ /**
+ * \brief Destructor
+ */
+ virtual ~TrackerSamplerAlgorithm();
+
+ /** @brief Create TrackerSamplerAlgorithm by tracker sampler type.
+ @param trackerSamplerType The trackerSamplerType name
+
+ The modes available now:
+
+ - "CSC" -- Current State Center
+ - "CS" -- Current State
+ */
+ static Ptr<TrackerSamplerAlgorithm> create( const String& trackerSamplerType );
+
+ /** @brief Computes the regions starting from a position in an image.
+
+ Return true if samples are computed, false otherwise
+
+ @param image The current frame
+ @param boundingBox The bounding box from which regions can be calculated
+
+ @param sample The computed samples @cite AAM Fig. 1 variable Sk
+ */
+ bool sampling( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
+
+ /** @brief Get the name of the specific TrackerSamplerAlgorithm
+ */
+ String getClassName() const;
+
+ protected:
+ String className;
+
+ virtual bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ) = 0;
+};
+
+/**
+ * \brief Class that manages the sampler in order to select regions for the update the model of the tracker
+ * [AAM] Sampling e Labeling. See table I and section III B
+ */
+
+/** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
+
+@cite AAM Sampling e Labeling. See table I and section III B
+
+TrackerSampler is an aggregation of TrackerSamplerAlgorithm
+@sa
+ TrackerSamplerAlgorithm
+ */
+class CV_EXPORTS TrackerSampler
+{
+ public:
+
+ /**
+ * \brief Constructor
+ */
+ TrackerSampler();
+
+ /**
+ * \brief Destructor
+ */
+ ~TrackerSampler();
+
+ /** @brief Computes the regions starting from a position in an image
+ @param image The current frame
+ @param boundingBox The bounding box from which regions can be calculated
+ */
+ void sampling( const Mat& image, Rect boundingBox );
+
+ /** @brief Return the collection of the TrackerSamplerAlgorithm
+ */
+ const std::vector<std::pair<String, Ptr<TrackerSamplerAlgorithm> > >& getSamplers() const;
+
+ /** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
+ */
+ const std::vector<Mat>& getSamples() const;
+
+ /** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
+ @param trackerSamplerAlgorithmType The TrackerSamplerAlgorithm name
+
+ The modes available now:
+ - "CSC" -- Current State Center
+ - "CS" -- Current State
+ - "PF" -- Particle Filtering
+
+ Example TrackerSamplerAlgorithm::addTrackerSamplerAlgorithm : :
+ @code
+ TrackerSamplerCSC::Params CSCparameters;
+ Ptr<TrackerSamplerAlgorithm> CSCSampler = new TrackerSamplerCSC( CSCparameters );
+
+ if( !sampler->addTrackerSamplerAlgorithm( CSCSampler ) )
+ return false;
+
+ //or add CSC sampler with default parameters
+ //sampler->addTrackerSamplerAlgorithm( "CSC" );
+ @endcode
+ @note If you use the second method, you must initialize the TrackerSamplerAlgorithm
+ */
+ bool addTrackerSamplerAlgorithm( String trackerSamplerAlgorithmType );
+
+ /** @overload
+ @param sampler The TrackerSamplerAlgorithm
+ */
+ bool addTrackerSamplerAlgorithm( Ptr<TrackerSamplerAlgorithm>& sampler );
+
+ private:
+ std::vector<std::pair<String, Ptr<TrackerSamplerAlgorithm> > > samplers;
+ std::vector<Mat> samples;
+ bool blockAddTrackerSampler;
+
+ void clearSamples();
+};
+
+/************************************ TrackerModel Base Classes ************************************/
+
+/** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
+
+See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
+
+Inherits this class with your Target state, In own implementation you can add scale variation,
+width, height, orientation, etc.
+ */
+class CV_EXPORTS TrackerTargetState
+{
+ public:
+ virtual ~TrackerTargetState()
+ {
+ }
+ ;
+ /**
+ * \brief Get the position
+ * \return The position
+ */
+ Point2f getTargetPosition() const;
+
+ /**
+ * \brief Set the position
+ * \param position The position
+ */
+ void setTargetPosition( const Point2f& position );
+ /**
+ * \brief Get the width of the target
+ * \return The width of the target
+ */
+ int getTargetWidth() const;
+
+ /**
+ * \brief Set the width of the target
+ * \param width The width of the target
+ */
+ void setTargetWidth( int width );
+ /**
+ * \brief Get the height of the target
+ * \return The height of the target
+ */
+ int getTargetHeight() const;
+
+ /**
+ * \brief Set the height of the target
+ * \param height The height of the target
+ */
+ void setTargetHeight( int height );
+
+ protected:
+ Point2f targetPosition;
+ int targetWidth;
+ int targetHeight;
+
+};
+
+/** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
+
+See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
+@sa TrackerTargetState
+ */
+typedef std::vector<std::pair<Ptr<TrackerTargetState>, float> > ConfidenceMap;
+
+/** @brief Represents the estimate states for all frames
+
+@cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
+
+@sa TrackerTargetState
+ */
+typedef std::vector<Ptr<TrackerTargetState> > Trajectory;
+
+/** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
+
+See @cite AAM State estimator
+
+See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
+ */
+class CV_EXPORTS TrackerStateEstimator
+{
+ public:
+ virtual ~TrackerStateEstimator();
+
+ /** @brief Estimate the most likely target state, return the estimated state
+ @param confidenceMaps The overall appearance model as a list of :cConfidenceMap
+ */
+ Ptr<TrackerTargetState> estimate( const std::vector<ConfidenceMap>& confidenceMaps );
+
+ /** @brief Update the ConfidenceMap with the scores
+ @param confidenceMaps The overall appearance model as a list of :cConfidenceMap
+ */
+ void update( std::vector<ConfidenceMap>& confidenceMaps );
+
+ /** @brief Create TrackerStateEstimator by tracker state estimator type
+ @param trackeStateEstimatorType The TrackerStateEstimator name
+
+ The modes available now:
+
+ - "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
+
+ The modes available soon:
+
+ - "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
+ */
+ static Ptr<TrackerStateEstimator> create( const String& trackeStateEstimatorType );
+
+ /** @brief Get the name of the specific TrackerStateEstimator
+ */
+ String getClassName() const;
+
+ protected:
+
+ virtual Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps ) = 0;
+ virtual void updateImpl( std::vector<ConfidenceMap>& confidenceMaps ) = 0;
+ String className;
+};
+
+/** @brief Abstract class that represents the model of the target. It must be instantiated by specialized
+tracker
+
+See @cite AAM Ak
+
+Inherits this with your TrackerModel
+ */
+class CV_EXPORTS TrackerModel
+{
+ public:
+
+ /**
+ * \brief Constructor
+ */
+ TrackerModel();
+
+ /**
+ * \brief Destructor
+ */
+ virtual ~TrackerModel();
+
+ /** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
+ @param trackerStateEstimator The TrackerStateEstimator
+ @note You can add only one TrackerStateEstimator
+ */
+ bool setTrackerStateEstimator( Ptr<TrackerStateEstimator> trackerStateEstimator );
+
+ /** @brief Estimate the most likely target location
+
+ @cite AAM ME, Model Estimation table I
+ @param responses Features extracted from TrackerFeatureSet
+ */
+ void modelEstimation( const std::vector<Mat>& responses );
+
+ /** @brief Update the model
+
+ @cite AAM MU, Model Update table I
+ */
+ void modelUpdate();
+
+ /** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
+ */
+ bool runStateEstimator();
+
+ /** @brief Set the current TrackerTargetState in the Trajectory
+ @param lastTargetState The current TrackerTargetState
+ */
+ void setLastTargetState( const Ptr<TrackerTargetState>& lastTargetState );
+
+ /** @brief Get the last TrackerTargetState from Trajectory
+ */
+ Ptr<TrackerTargetState> getLastTargetState() const;
+
+ /** @brief Get the list of the ConfidenceMap
+ */
+ const std::vector<ConfidenceMap>& getConfidenceMaps() const;
+
+ /** @brief Get the last ConfidenceMap for the current frame
+ */
+ const ConfidenceMap& getLastConfidenceMap() const;
+
+ /** @brief Get the TrackerStateEstimator
+ */
+ Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
+
+ private:
+
+ void clearCurrentConfidenceMap();
+
+ protected:
+ std::vector<ConfidenceMap> confidenceMaps;
+ Ptr<TrackerStateEstimator> stateEstimator;
+ ConfidenceMap currentConfidenceMap;
+ Trajectory trajectory;
+ int maxCMLength;
+
+ virtual void modelEstimationImpl( const std::vector<Mat>& responses ) = 0;
+ virtual void modelUpdateImpl() = 0;
+
+};
+
+/************************************ Tracker Base Class ************************************/
+
+/** @brief Base abstract class for the long-term tracker:
+ */
+class CV_EXPORTS_W Tracker : public virtual Algorithm
+{
+ public:
+
+ virtual ~Tracker();
+
+ /** @brief Initialize the tracker with a know bounding box that surrounding the target
+ @param image The initial frame
+ @param boundingBox The initial boundig box
+
+ @return True if initialization went succesfully, false otherwise
+ */
+ CV_WRAP bool init( const Mat& image, const Rect2d& boundingBox );
+
+ /** @brief Update the tracker, find the new most likely bounding box for the target
+ @param image The current frame
+ @param boundingBox The boundig box that represent the new target location, if true was returned, not
+ modified otherwise
+
+ @return True means that target was located and false means that tracker cannot locate target in
+ current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
+ missing from the frame (say, out of sight)
+ */
+ CV_WRAP bool update( const Mat& image, CV_OUT Rect2d& boundingBox );
+
+ /** @brief Creates a tracker by its name.
+ @param trackerType Tracker type
+
+ The following detector types are supported:
+
+ - "MIL" -- TrackerMIL
+ - "BOOSTING" -- TrackerBoosting
+ */
+ CV_WRAP static Ptr<Tracker> create( const String& trackerType );
+
+ virtual void read( const FileNode& fn )=0;
+ virtual void write( FileStorage& fs ) const=0;
+
+ Ptr<TrackerModel> getModel()
+ {
+ return model;
+ }
+
+ protected:
+
+ virtual bool initImpl( const Mat& image, const Rect2d& boundingBox ) = 0;
+ virtual bool updateImpl( const Mat& image, Rect2d& boundingBox ) = 0;
+
+ bool isInit;
+
+ Ptr<TrackerFeatureSet> featureSet;
+ Ptr<TrackerSampler> sampler;
+ Ptr<TrackerModel> model;
+};
+
+
+/************************************ Specific TrackerStateEstimator Classes ************************************/
+
+/** @brief TrackerStateEstimator based on Boosting
+ */
+class CV_EXPORTS TrackerStateEstimatorMILBoosting : public TrackerStateEstimator
+{
+ public:
+
+ /**
+ * Implementation of the target state for TrackerStateEstimatorMILBoosting
+ */
+ class TrackerMILTargetState : public TrackerTargetState
+ {
+
+ public:
+ /**
+ * \brief Constructor
+ * \param position Top left corner of the bounding box
+ * \param width Width of the bounding box
+ * \param height Height of the bounding box
+ * \param foreground label for target or background
+ * \param features features extracted
+ */
+ TrackerMILTargetState( const Point2f& position, int width, int height, bool foreground, const Mat& features );
+
+ /**
+ * \brief Destructor
+ */
+ ~TrackerMILTargetState()
+ {
+ }
+ ;
+
+ /** @brief Set label: true for target foreground, false for background
+ @param foreground Label for background/foreground
+ */
+ void setTargetFg( bool foreground );
+ /** @brief Set the features extracted from TrackerFeatureSet
+ @param features The features extracted
+ */
+ void setFeatures( const Mat& features );
+ /** @brief Get the label. Return true for target foreground, false for background
+ */
+ bool isTargetFg() const;
+ /** @brief Get the features extracted
+ */
+ Mat getFeatures() const;
+
+ private:
+ bool isTarget;
+ Mat targetFeatures;
+ };
+
+ /** @brief Constructor
+ @param nFeatures Number of features for each sample
+ */
+ TrackerStateEstimatorMILBoosting( int nFeatures = 250 );
+ ~TrackerStateEstimatorMILBoosting();
+
+ /** @brief Set the current confidenceMap
+ @param confidenceMap The current :cConfidenceMap
+ */
+ void setCurrentConfidenceMap( ConfidenceMap& confidenceMap );
+
+ protected:
+ Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps );
+ void updateImpl( std::vector<ConfidenceMap>& confidenceMaps );
+
+ private:
+ uint max_idx( const std::vector<float> &v );
+ void prepareData( const ConfidenceMap& confidenceMap, Mat& positive, Mat& negative );
+
+ ClfMilBoost boostMILModel;
+ bool trained;
+ int numFeatures;
+
+ ConfidenceMap currentConfidenceMap;
+};
+
+/** @brief TrackerStateEstimatorAdaBoosting based on ADA-Boosting
+ */
+class CV_EXPORTS TrackerStateEstimatorAdaBoosting : public TrackerStateEstimator
+{
+ public:
+ /** @brief Implementation of the target state for TrackerAdaBoostingTargetState
+ */
+ class TrackerAdaBoostingTargetState : public TrackerTargetState
+ {
+
+ public:
+ /**
+ * \brief Constructor
+ * \param position Top left corner of the bounding box
+ * \param width Width of the bounding box
+ * \param height Height of the bounding box
+ * \param foreground label for target or background
+ * \param responses list of features
+ */
+ TrackerAdaBoostingTargetState( const Point2f& position, int width, int height, bool foreground, const Mat& responses );
+
+ /**
+ * \brief Destructor
+ */
+ ~TrackerAdaBoostingTargetState()
+ {
+ }
+ ;
+
+ /** @brief Set the features extracted from TrackerFeatureSet
+ @param responses The features extracted
+ */
+ void setTargetResponses( const Mat& responses );
+ /** @brief Set label: true for target foreground, false for background
+ @param foreground Label for background/foreground
+ */
+ void setTargetFg( bool foreground );
+ /** @brief Get the features extracted
+ */
+ Mat getTargetResponses() const;
+ /** @brief Get the label. Return true for target foreground, false for background
+ */
+ bool isTargetFg() const;
+
+ private:
+ bool isTarget;
+ Mat targetResponses;
+
+ };
+
+ /** @brief Constructor
+ @param numClassifer Number of base classifiers
+ @param initIterations Number of iterations in the initialization
+ @param nFeatures Number of features/weak classifiers
+ @param patchSize tracking rect
+ @param ROI initial ROI
+ */
+ TrackerStateEstimatorAdaBoosting( int numClassifer, int initIterations, int nFeatures, Size patchSize, const Rect& ROI );
+
+ /**
+ * \brief Destructor
+ */
+ ~TrackerStateEstimatorAdaBoosting();
+
+ /** @brief Get the sampling ROI
+ */
+ Rect getSampleROI() const;
+
+ /** @brief Set the sampling ROI
+ @param ROI the sampling ROI
+ */
+ void setSampleROI( const Rect& ROI );
+
+ /** @brief Set the current confidenceMap
+ @param confidenceMap The current :cConfidenceMap
+ */
+ void setCurrentConfidenceMap( ConfidenceMap& confidenceMap );
+
+ /** @brief Get the list of the selected weak classifiers for the classification step
+ */
+ std::vector<int> computeSelectedWeakClassifier();
+
+ /** @brief Get the list of the weak classifiers that should be replaced
+ */
+ std::vector<int> computeReplacedClassifier();
+
+ /** @brief Get the list of the weak classifiers that replace those to be replaced
+ */
+ std::vector<int> computeSwappedClassifier();
+
+ protected:
+ Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps );
+ void updateImpl( std::vector<ConfidenceMap>& confidenceMaps );
+
+ Ptr<StrongClassifierDirectSelection> boostClassifier;
+
+ private:
+ int numBaseClassifier;
+ int iterationInit;
+ int numFeatures;
+ bool trained;
+ Size initPatchSize;
+ Rect sampleROI;
+ std::vector<int> replacedClassifier;
+ std::vector<int> swappedClassifier;
+
+ ConfidenceMap currentConfidenceMap;
+};
+
+/**
+ * \brief TrackerStateEstimator based on SVM
+ */
+class CV_EXPORTS TrackerStateEstimatorSVM : public TrackerStateEstimator
+{
+ public:
+ TrackerStateEstimatorSVM();
+ ~TrackerStateEstimatorSVM();
+
+ protected:
+ Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps );
+ void updateImpl( std::vector<ConfidenceMap>& confidenceMaps );
+};
+
+/************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
+
+/** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
+ */
+class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
+{
+ public:
+ enum
+ {
+ MODE_INIT_POS = 1, //!< mode for init positive samples
+ MODE_INIT_NEG = 2, //!< mode for init negative samples
+ MODE_TRACK_POS = 3, //!< mode for update positive samples
+ MODE_TRACK_NEG = 4, //!< mode for update negative samples
+ MODE_DETECT = 5 //!< mode for detect samples
+ };
+
+ struct CV_EXPORTS Params
+ {
+ Params();
+ float initInRad; //!< radius for gathering positive instances during init
+ float trackInPosRad; //!< radius for gathering positive instances during tracking
+ float searchWinSize; //!< size of search window
+ int initMaxNegNum; //!< # negative samples to use during init
+ int trackMaxPosNum; //!< # positive samples to use during training
+ int trackMaxNegNum; //!< # negative samples to use during training
+ };
+
+ /** @brief Constructor
+ @param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
+ */
+ TrackerSamplerCSC( const TrackerSamplerCSC::Params &parameters = TrackerSamplerCSC::Params() );
+
+ /** @brief Set the sampling mode of TrackerSamplerCSC
+ @param samplingMode The sampling mode
+
+ The modes are:
+
+ - "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
+ - "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
+ - "MODE_TRACK_POS = 3" -- for the positive sampling in update step
+ - "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
+ - "MODE_DETECT = 5" -- for the sampling in detection step
+ */
+ void setMode( int samplingMode );
+
+ ~TrackerSamplerCSC();
+
+ protected:
+
+ bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
+
+ private:
+
+ Params params;
+ int mode;
+ RNG rng;
+
+ std::vector<Mat> sampleImage( const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000 );
+};
+
+/** @brief TrackerSampler based on CS (current state), used by algorithm TrackerBoosting
+ */
+class CV_EXPORTS TrackerSamplerCS : public TrackerSamplerAlgorithm
+{
+ public:
+ enum
+ {
+ MODE_POSITIVE = 1, //!< mode for positive samples
+ MODE_NEGATIVE = 2, //!< mode for negative samples
+ MODE_CLASSIFY = 3 //!< mode for classify samples
+ };
+
+ struct CV_EXPORTS Params
+ {
+ Params();
+ float overlap; //!<overlapping for the search windows
+ float searchFactor; //!<search region parameter
+ };
+ /** @brief Constructor
+ @param parameters TrackerSamplerCS parameters TrackerSamplerCS::Params
+ */
+ TrackerSamplerCS( const TrackerSamplerCS::Params &parameters = TrackerSamplerCS::Params() );
+
+ /** @brief Set the sampling mode of TrackerSamplerCS
+ @param samplingMode The sampling mode
+
+ The modes are:
+
+ - "MODE_POSITIVE = 1" -- for the positive sampling
+ - "MODE_NEGATIVE = 2" -- for the negative sampling
+ - "MODE_CLASSIFY = 3" -- for the sampling in classification step
+ */
+ void setMode( int samplingMode );
+
+ ~TrackerSamplerCS();
+
+ bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
+ Rect getROI() const;
+ private:
+ Rect getTrackingROI( float searchFactor );
+ Rect RectMultiply( const Rect & rect, float f );
+ std::vector<Mat> patchesRegularScan( const Mat& image, Rect trackingROI, Size patchSize );
+ void setCheckedROI( Rect imageROI );
+
+ Params params;
+ int mode;
+ Rect trackedPatch;
+ Rect validROI;
+ Rect ROI;
+
+};
+
+/** @brief This sampler is based on particle filtering.
+
+In principle, it can be thought of as performing some sort of optimization (and indeed, this
+tracker uses opencv's optim module), where tracker seeks to find the rectangle in given frame,
+which is the most *"similar"* to the initial rectangle (the one, given through the constructor).
+
+The optimization performed is stochastic and somehow resembles genetic algorithms, where on each new
+image received (submitted via TrackerSamplerPF::sampling()) we start with the region bounded by
+boundingBox, then generate several "perturbed" boxes, take the ones most similar to the original.
+This selection round is repeated several times. At the end, we hope that only the most promising box
+remaining, and these are combined to produce the subrectangle of image, which is put as a sole
+element in array sample.
+
+It should be noted, that the definition of "similarity" between two rectangles is based on comparing
+their histograms. As experiments show, tracker is *not* very succesfull if target is assumed to
+strongly change its dimensions.
+ */
+class CV_EXPORTS TrackerSamplerPF : public TrackerSamplerAlgorithm
+{
+public:
+ /** @brief This structure contains all the parameters that can be varied during the course of sampling
+ algorithm. Below is the structure exposed, together with its members briefly explained with
+ reference to the above discussion on algorithm's working.
+ */
+ struct CV_EXPORTS Params
+ {
+ Params();
+ int iterationNum; //!< number of selection rounds
+ int particlesNum; //!< number of "perturbed" boxes on each round
+ double alpha; //!< with each new round we exponentially decrease the amount of "perturbing" we allow (like in simulated annealing)
+ //!< and this very alpha controls how fast annealing happens, ie. how fast perturbing decreases
+ Mat_<double> std; //!< initial values for perturbing (1-by-4 array, as each rectangle is given by 4 values -- coordinates of opposite vertices,
+ //!< hence we have 4 values to perturb)
+ };
+ /** @brief Constructor
+ @param chosenRect Initial rectangle, that is supposed to contain target we'd like to track.
+ @param parameters
+ */
+ TrackerSamplerPF(const Mat& chosenRect,const TrackerSamplerPF::Params &parameters = TrackerSamplerPF::Params());
+protected:
+ bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
+private:
+ Params params;
+ Ptr<MinProblemSolver> _solver;
+ Ptr<MinProblemSolver::Function> _function;
+};
+
+/************************************ Specific TrackerFeature Classes ************************************/
+
+/**
+ * \brief TrackerFeature based on Feature2D
+ */
+class CV_EXPORTS TrackerFeatureFeature2d : public TrackerFeature
+{
+ public:
+
+ /**
+ * \brief Constructor
+ * \param detectorType string of FeatureDetector
+ * \param descriptorType string of DescriptorExtractor
+ */
+ TrackerFeatureFeature2d( String detectorType, String descriptorType );
+
+ ~TrackerFeatureFeature2d();
+
+ void selection( Mat& response, int npoints );
+
+ protected:
+
+ bool computeImpl( const std::vector<Mat>& images, Mat& response );
+
+ private:
+
+ std::vector<KeyPoint> keypoints;
+};
+
+/**
+ * \brief TrackerFeature based on HOG
+ */
+class CV_EXPORTS TrackerFeatureHOG : public TrackerFeature
+{
+ public:
+
+ TrackerFeatureHOG();
+
+ ~TrackerFeatureHOG();
+
+ void selection( Mat& response, int npoints );
+
+ protected:
+
+ bool computeImpl( const std::vector<Mat>& images, Mat& response );
+
+};
+
+/** @brief TrackerFeature based on HAAR features, used by TrackerMIL and many others algorithms
+@note HAAR features implementation is copied from apps/traincascade and modified according to MIL
+ */
+class CV_EXPORTS TrackerFeatureHAAR : public TrackerFeature
+{
+ public:
+ struct CV_EXPORTS Params
+ {
+ Params();
+ int numFeatures; //!< # of rects
+ Size rectSize; //!< rect size
+ bool isIntegral; //!< true if input images are integral, false otherwise
+ };
+
+ /** @brief Constructor
+ @param parameters TrackerFeatureHAAR parameters TrackerFeatureHAAR::Params
+ */
+ TrackerFeatureHAAR( const TrackerFeatureHAAR::Params &parameters = TrackerFeatureHAAR::Params() );
+
+ ~TrackerFeatureHAAR();
+
+ /** @brief Compute the features only for the selected indices in the images collection
+ @param selFeatures indices of selected features
+ @param images The images
+ @param response Collection of response for the specific TrackerFeature
+ */
+ bool extractSelected( const std::vector<int> selFeatures, const std::vector<Mat>& images, Mat& response );
+
+ /** @brief Identify most effective features
+ @param response Collection of response for the specific TrackerFeature
+ @param npoints Max number of features
+
+ @note This method modifies the response parameter
+ */
+ void selection( Mat& response, int npoints );
+
+ /** @brief Swap the feature in position source with the feature in position target
+ @param source The source position
+ @param target The target position
+ */
+ bool swapFeature( int source, int target );
+
+ /** @brief Swap the feature in position id with the feature input
+ @param id The position
+ @param feature The feature
+ */
+ bool swapFeature( int id, CvHaarEvaluator::FeatureHaar& feature );
+
+ /** @brief Get the feature in position id
+ @param id The position
+ */
+ CvHaarEvaluator::FeatureHaar& getFeatureAt( int id );
+
+ protected:
+ bool computeImpl( const std::vector<Mat>& images, Mat& response );
+
+ private:
+
+ Params params;
+ Ptr<CvHaarEvaluator> featureEvaluator;
+};
+
+/**
+ * \brief TrackerFeature based on LBP
+ */
+class CV_EXPORTS TrackerFeatureLBP : public TrackerFeature
+{
+ public:
+
+ TrackerFeatureLBP();
+
+ ~TrackerFeatureLBP();
+
+ void selection( Mat& response, int npoints );
+
+ protected:
+
+ bool computeImpl( const std::vector<Mat>& images, Mat& response );
+
+};
+
+/************************************ Specific Tracker Classes ************************************/
+
+/** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
+background.
+
+Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
+based on @cite MIL .
+
+Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
+ */
+class CV_EXPORTS TrackerMIL : public Tracker
+{
+ public:
+ struct CV_EXPORTS Params
+ {
+ Params();
+ //parameters for sampler
+ float samplerInitInRadius; //!< radius for gathering positive instances during init
+ int samplerInitMaxNegNum; //!< # negative samples to use during init
+ float samplerSearchWinSize; //!< size of search window
+ float samplerTrackInRadius; //!< radius for gathering positive instances during tracking
+ int samplerTrackMaxPosNum; //!< # positive samples to use during tracking
+ int samplerTrackMaxNegNum; //!< # negative samples to use during tracking
+ int featureSetNumFeatures; //!< # features
+
+ void read( const FileNode& fn );
+ void write( FileStorage& fs ) const;
+ };
+
+ /** @brief Constructor
+ @param parameters MIL parameters TrackerMIL::Params
+ */
+ BOILERPLATE_CODE("MIL",TrackerMIL);
+};
+
+/** @brief This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm.
+
+The classifier uses the surrounding background as negative examples in update step to avoid the
+drifting problem. The implementation is based on @cite OLB .
+ */
+class CV_EXPORTS TrackerBoosting : public Tracker
+{
+ public:
+ struct CV_EXPORTS Params
+ {
+ Params();
+ int numClassifiers; //!<the number of classifiers to use in a OnlineBoosting algorithm
+ float samplerOverlap; //!<search region parameters to use in a OnlineBoosting algorithm
+ float samplerSearchFactor; //!< search region parameters to use in a OnlineBoosting algorithm
+ int iterationInit; //!<the initial iterations
+ int featureSetNumFeatures; //!< # features
+ /**
+ * \brief Read parameters from file
+ */
+ void read( const FileNode& fn );
+
+ /**
+ * \brief Write parameters in a file
+ */
+ void write( FileStorage& fs ) const;
+ };
+
+ /** @brief Constructor
+ @param parameters BOOSTING parameters TrackerBoosting::Params
+ */
+ BOILERPLATE_CODE("BOOSTING",TrackerBoosting);
+};
+
+/** @brief Median Flow tracker implementation.
+
+Implementation of a paper @cite MedianFlow .
+
+The tracker is suitable for very smooth and predictable movements when object is visible throughout
+the whole sequence. It's quite and accurate for this type of problems (in particular, it was shown
+by authors to outperform MIL). During the implementation period the code at
+<http://www.aonsquared.co.uk/node/5>, the courtesy of the author Arthur Amarra, was used for the
+reference purpose.
+ */
+class CV_EXPORTS TrackerMedianFlow : public Tracker
+{
+ public:
+ struct CV_EXPORTS Params
+ {
+ Params();
+ int pointsInGrid; //!<square root of number of keypoints used; increase it to trade
+ //!<accurateness for speed; default value is sensible and recommended
+ void read( const FileNode& /*fn*/ );
+ void write( FileStorage& /*fs*/ ) const;
+ };
+
+ /** @brief Constructor
+ @param parameters Median Flow parameters TrackerMedianFlow::Params
+ */
+ BOILERPLATE_CODE("MEDIANFLOW",TrackerMedianFlow);
+};
+
+/** @brief TLD is a novel tracking framework that explicitly decomposes the long-term tracking task into
+tracking, learning and detection.
+
+The tracker follows the object from frame to frame. The detector localizes all appearances that
+have been observed so far and corrects the tracker if necessary. The learning estimates detector’s
+errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
+
+The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
+implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
+occlusions, object absence etc.
+ */
+class CV_EXPORTS TrackerTLD : public Tracker
+{
+ public:
+ struct CV_EXPORTS Params
+ {
+ Params();
+ void read( const FileNode& /*fn*/ );
+ void write( FileStorage& /*fs*/ ) const;
+ };
+
+ /** @brief Constructor
+ @param parameters TLD parameters TrackerTLD::Params
+ */
+ BOILERPLATE_CODE("TLD",TrackerTLD);
+};
+
+/** @brief KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed.
+ * This tracking method is an implementation of @cite KCF_ECCV which is extended to KFC with color-names features (@cite KCF_CN).
+ * The original paper of KCF is available at <http://home.isr.uc.pt/~henriques/circulant/index.html>
+ * as well as the matlab implementation. For more information about KCF with color-names features, please refer to
+ * <http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html>.
+ */
+class CV_EXPORTS TrackerKCF : public Tracker
+{
+public:
+ /**
+ * \brief Feature type to be used in the tracking grayscale, colornames, compressed color-names
+ * The modes available now:
+ - "GRAY" -- Use grayscale values as the feature
+ - "CN" -- Color-names feature
+ */
+ enum MODE {
+ GRAY = (1u << 0),
+ CN = (1u << 1),
+ CUSTOM = (1u << 2)
+ };
+
+ struct CV_EXPORTS Params
+ {
+ /**
+ * \brief Constructor
+ */
+ Params();
+
+ /**
+ * \brief Read parameters from file, currently unused
+ */
+ void read(const FileNode& /*fn*/);
+
+ /**
+ * \brief Read parameters from file, currently unused
+ */
+ void write(FileStorage& /*fs*/) const;
+
+ double sigma; //!< gaussian kernel bandwidth
+ double lambda; //!< regularization
+ double interp_factor; //!< linear interpolation factor for adaptation
+ double output_sigma_factor; //!< spatial bandwidth (proportional to target)
+ double pca_learning_rate; //!< compression learning rate
+ bool resize; //!< activate the resize feature to improve the processing speed
+ bool split_coeff; //!< split the training coefficients into two matrices
+ bool wrap_kernel; //!< wrap around the kernel values
+ bool compress_feature; //!< activate the pca method to compress the features
+ int max_patch_size; //!< threshold for the ROI size
+ int compressed_size; //!< feature size after compression
+ unsigned int desc_pca; //!< compressed descriptors of TrackerKCF::MODE
+ unsigned int desc_npca; //!< non-compressed descriptors of TrackerKCF::MODE
+ };
+
+ virtual void setFeatureExtractor(void(*)(const Mat, const Rect, Mat&), bool pca_func = false);
+
+ /** @brief Constructor
+ @param parameters KCF parameters TrackerKCF::Params
+ */
+ BOILERPLATE_CODE("KCF", TrackerKCF);
+};
+
+/** @brief GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
+ * GOTURN is much faster due to offline training without online fine-tuning nature.
+ * GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
+ * we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
+ * robust to viewpoint changes, lighting changes, and deformations.
+ * Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
+ * Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
+ * Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
+ * As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
+ * Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
+ * <https://github.com/Auron-X/GOTURN_Training_Toolkit>
+ * GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
+*/
+class CV_EXPORTS TrackerGOTURN : public Tracker
+{
+public:
+ struct CV_EXPORTS Params
+ {
+ Params();
+ void read(const FileNode& /*fn*/);
+ void write(FileStorage& /*fs*/) const;
+ };
+
+ /** @brief Constructor
+ @param parameters GOTURN parameters TrackerGOTURN::Params
+ */
+ BOILERPLATE_CODE("GOTURN", TrackerGOTURN);
+};
+
+/************************************ MultiTracker Class ---By Laksono Kurnianggoro---) ************************************/
+/** @brief This class is used to track multiple objects using the specified tracker algorithm.
+* The MultiTracker is naive implementation of multiple object tracking.
+* It process the tracked objects independently without any optimization accross the tracked objects.
+*/
+class CV_EXPORTS_W MultiTracker
+{
+public:
+
+ /**
+ * \brief Constructor.
+ * In the case of trackerType is given, it will be set as the default algorithm for all trackers.
+ * @param trackerType the name of the tracker algorithm to be used
+ */
+ CV_WRAP MultiTracker(const String& trackerType = "");
+
+ /**
+ * \brief Destructor
+ */
+ ~MultiTracker();
+
+ /**
+ * \brief Add a new object to be tracked.
+ * The defaultAlgorithm will be used the newly added tracker.
+ * @param image input image
+ * @param boundingBox a rectangle represents ROI of the tracked object
+ */
+ CV_WRAP bool add(const Mat& image, const Rect2d& boundingBox);
+
+ /**
+ * \brief Add a new object to be tracked.
+ * @param trackerType the name of the tracker algorithm to be used
+ * @param image input image
+ * @param boundingBox a rectangle represents ROI of the tracked object
+ */
+ CV_WRAP bool add(const String& trackerType, const Mat& image, const Rect2d& boundingBox);
+
+ /**
+ * \brief Add a set of objects to be tracked.
+ * @param trackerType the name of the tracker algorithm to be used
+ * @param image input image
+ * @param boundingBox list of the tracked objects
+ */
+ CV_WRAP bool add(const String& trackerType, const Mat& image, std::vector<Rect2d> boundingBox);
+
+ /**
+ * \brief Add a set of objects to be tracked using the defaultAlgorithm tracker.
+ * @param image input image
+ * @param boundingBox list of the tracked objects
+ */
+ CV_WRAP bool add(const Mat& image, std::vector<Rect2d> boundingBox);
+
+ /**
+ * \brief Update the current tracking status.
+ * The result will be saved in the internal storage.
+ * @param image input image
+ */
+ bool update(const Mat& image);
+
+ //!< storage for the tracked objects, each object corresponds to one tracker algorithm.
+ std::vector<Rect2d> objects;
+
+ /**
+ * \brief Update the current tracking status.
+ * @param image input image
+ * @param boundingBox the tracking result, represent a list of ROIs of the tracked objects.
+ */
+ CV_WRAP bool update(const Mat& image, CV_OUT std::vector<Rect2d> & boundingBox);
+
+protected:
+ //!< storage for the tracker algorithms.
+ std::vector< Ptr<Tracker> > trackerList;
+
+ //!< default algorithm for the tracking method.
+ String defaultAlgorithm;
+};
+
+class ROISelector {
+public:
+ Rect2d select(Mat img, bool fromCenter = true);
+ Rect2d select(const cv::String& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
+ void select(const cv::String& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
+
+ struct handlerT{
+ // basic parameters
+ bool isDrawing;
+ Rect2d box;
+ Mat image;
+
+ // parameters for drawing from the center
+ bool drawFromCenter;
+ Point2f center;
+
+ // initializer list
+ handlerT() : isDrawing(false), drawFromCenter(true) {};
+ }selectorParams;
+
+ // to store the tracked objects
+ std::vector<handlerT> objects;
+
+private:
+ static void mouseHandler(int event, int x, int y, int flags, void *param);
+ void opencv_mouse_callback(int event, int x, int y, int, void *param);
+
+ // save the keypressed characted
+ int key;
+};
+
+Rect2d CV_EXPORTS_W selectROI(Mat img, bool fromCenter = true);
+Rect2d CV_EXPORTS_W selectROI(const cv::String& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
+void CV_EXPORTS_W selectROI(const cv::String& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
+
+
+/************************************ Multi-Tracker Classes ---By Tyan Vladimir---************************************/
+
+/** @brief Base abstract class for the long-term Multi Object Trackers:
+
+@sa Tracker, MultiTrackerTLD
+*/
+class CV_EXPORTS MultiTracker_Alt
+{
+public:
+ /** @brief Constructor for Multitracker
+ */
+ MultiTracker_Alt()
+ {
+ targetNum = 0;
+ }
+
+ /** @brief Add a new target to a tracking-list and initialize the tracker with a know bounding box that surrounding the target
+ @param image The initial frame
+ @param boundingBox The initial boundig box of target
+ @param tracker_algorithm_name Multi-tracker algorithm name
+
+ @return True if new target initialization went succesfully, false otherwise
+ */
+ bool addTarget(const Mat& image, const Rect2d& boundingBox, String tracker_algorithm_name);
+
+ /** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets
+ @param image The current frame
+
+ @return True means that all targets were located and false means that tracker couldn't locate one of the targets in
+ current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
+ missing from the frame (say, out of sight)
+ */
+ bool update(const Mat& image);
+
+ /** @brief Current number of targets in tracking-list
+ */
+ int targetNum;
+
+ /** @brief Trackers list for Multi-Object-Tracker
+ */
+ std::vector <Ptr<Tracker> > trackers;
+
+ /** @brief Bounding Boxes list for Multi-Object-Tracker
+ */
+ std::vector <Rect2d> boundingBoxes;
+ /** @brief List of randomly generated colors for bounding boxes display
+ */
+ std::vector<Scalar> colors;
+};
+
+/** @brief Multi Object Tracker for TLD. TLD is a novel tracking framework that explicitly decomposes
+the long-term tracking task into tracking, learning and detection.
+
+The tracker follows the object from frame to frame. The detector localizes all appearances that
+have been observed so far and corrects the tracker if necessary. The learning estimates detector’s
+errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
+
+The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
+implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
+occlusions, object absence etc.
+
+@sa Tracker, MultiTracker, TrackerTLD
+*/
+class CV_EXPORTS MultiTrackerTLD : public MultiTracker_Alt
+{
+public:
+ /** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets by
+ optimized update method using some techniques to speedup calculations specifically for MO TLD. The only limitation
+ is that all target bounding boxes should have approximately same aspect ratios. Speed boost is around 20%
+
+ @param image The current frame.
+
+ @return True means that all targets were located and false means that tracker couldn't locate one of the targets in
+ current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
+ missing from the frame (say, out of sight)
+ */
+ bool update_opt(const Mat& image);
+};
+
+//! @}
+
+} /* namespace cv */
+
+#endif