summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/optflow.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty1/linux/include/opencv2/optflow.hpp')
-rw-r--r--thirdparty1/linux/include/opencv2/optflow.hpp364
1 files changed, 364 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/optflow.hpp b/thirdparty1/linux/include/opencv2/optflow.hpp
new file mode 100644
index 0000000..e68d5b7
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/optflow.hpp
@@ -0,0 +1,364 @@
+/*
+By downloading, copying, installing or using the software you agree to this
+license. If you do not agree to this license, do not download, install,
+copy or use the software.
+
+
+ License Agreement
+ For Open Source Computer Vision Library
+ (3-clause BSD License)
+
+Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+ * Neither the names of the copyright holders nor the names of the contributors
+ may be used to endorse or promote products derived from this software
+ without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are
+disclaimed. In no event shall copyright holders or contributors be liable for
+any direct, indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+*/
+
+#ifndef __OPENCV_OPTFLOW_HPP__
+#define __OPENCV_OPTFLOW_HPP__
+
+#include "opencv2/core.hpp"
+#include "opencv2/video.hpp"
+
+/**
+@defgroup optflow Optical Flow Algorithms
+
+Dense optical flow algorithms compute motion for each point:
+
+- cv::optflow::calcOpticalFlowSF
+- cv::optflow::createOptFlow_DeepFlow
+
+Motion templates is alternative technique for detecting motion and computing its direction.
+See samples/motempl.py.
+
+- cv::motempl::updateMotionHistory
+- cv::motempl::calcMotionGradient
+- cv::motempl::calcGlobalOrientation
+- cv::motempl::segmentMotion
+
+Functions reading and writing .flo files in "Middlebury" format, see: <http://vision.middlebury.edu/flow/code/flow-code/README.txt>
+
+- cv::optflow::readOpticalFlow
+- cv::optflow::writeOpticalFlow
+
+ */
+
+#include "opencv2/optflow/pcaflow.hpp"
+#include "opencv2/optflow/sparse_matching_gpc.hpp"
+
+namespace cv
+{
+namespace optflow
+{
+
+//! @addtogroup optflow
+//! @{
+
+/** @overload */
+CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray flow,
+ int layers, int averaging_block_size, int max_flow);
+
+/** @brief Calculate an optical flow using "SimpleFlow" algorithm.
+
+@param from First 8-bit 3-channel image.
+@param to Second 8-bit 3-channel image of the same size as prev
+@param flow computed flow image that has the same size as prev and type CV_32FC2
+@param layers Number of layers
+@param averaging_block_size Size of block through which we sum up when calculate cost function
+for pixel
+@param max_flow maximal flow that we search at each level
+@param sigma_dist vector smooth spatial sigma parameter
+@param sigma_color vector smooth color sigma parameter
+@param postprocess_window window size for postprocess cross bilateral filter
+@param sigma_dist_fix spatial sigma for postprocess cross bilateralf filter
+@param sigma_color_fix color sigma for postprocess cross bilateral filter
+@param occ_thr threshold for detecting occlusions
+@param upscale_averaging_radius window size for bilateral upscale operation
+@param upscale_sigma_dist spatial sigma for bilateral upscale operation
+@param upscale_sigma_color color sigma for bilateral upscale operation
+@param speed_up_thr threshold to detect point with irregular flow - where flow should be
+recalculated after upscale
+
+See @cite Tao2012 . And site of project - <http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/>.
+
+@note
+ - An example using the simpleFlow algorithm can be found at samples/simpleflow_demo.cpp
+ */
+CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray flow, int layers,
+ int averaging_block_size, int max_flow,
+ double sigma_dist, double sigma_color, int postprocess_window,
+ double sigma_dist_fix, double sigma_color_fix, double occ_thr,
+ int upscale_averaging_radius, double upscale_sigma_dist,
+ double upscale_sigma_color, double speed_up_thr );
+
+/** @brief Fast dense optical flow based on PyrLK sparse matches interpolation.
+
+@param from first 8-bit 3-channel or 1-channel image.
+@param to second 8-bit 3-channel or 1-channel image of the same size as from
+@param flow computed flow image that has the same size as from and CV_32FC2 type
+@param grid_step stride used in sparse match computation. Lower values usually
+ result in higher quality but slow down the algorithm.
+@param k number of nearest-neighbor matches considered, when fitting a locally affine
+ model. Lower values can make the algorithm noticeably faster at the cost of
+ some quality degradation.
+@param sigma parameter defining how fast the weights decrease in the locally-weighted affine
+ fitting. Higher values can help preserve fine details, lower values can help to get rid
+ of the noise in the output flow.
+@param use_post_proc defines whether the ximgproc::fastGlobalSmootherFilter() is used
+ for post-processing after interpolation
+@param fgs_lambda see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
+@param fgs_sigma see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
+ */
+CV_EXPORTS_W void calcOpticalFlowSparseToDense ( InputArray from, InputArray to, OutputArray flow,
+ int grid_step = 8, int k = 128, float sigma = 0.05f,
+ bool use_post_proc = true, float fgs_lambda = 500.0f,
+ float fgs_sigma = 1.5f );
+
+/** @brief Read a .flo file
+
+@param path Path to the file to be loaded
+
+The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
+Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
+flow in the horizontal direction (u), second - vertical (v).
+ */
+CV_EXPORTS_W Mat readOpticalFlow( const String& path );
+/** @brief Write a .flo to disk
+
+@param path Path to the file to be written
+@param flow Flow field to be stored
+
+The function stores a flow field in a file, returns true on success, false otherwise.
+The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
+to the flow in the horizontal direction (u), second - vertical (v).
+ */
+CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow );
+
+/** @brief Variational optical flow refinement
+
+This class implements variational refinement of the input flow field, i.e.
+it uses input flow to initialize the minimization of the following functional:
+\f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$,
+where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms
+respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the
+influence of outliers. A complete formulation and a description of the minimization
+procedure can be found in @cite Brox2004
+*/
+class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow
+{
+public:
+ /** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
+ (to avoid extra splits/merges) */
+ CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0;
+
+ /** @brief Number of outer (fixed-point) iterations in the minimization procedure.
+ @see setFixedPointIterations */
+ CV_WRAP virtual int getFixedPointIterations() const = 0;
+ /** @copybrief getFixedPointIterations @see getFixedPointIterations */
+ CV_WRAP virtual void setFixedPointIterations(int val) = 0;
+
+ /** @brief Number of inner successive over-relaxation (SOR) iterations
+ in the minimization procedure to solve the respective linear system.
+ @see setSorIterations */
+ CV_WRAP virtual int getSorIterations() const = 0;
+ /** @copybrief getSorIterations @see getSorIterations */
+ CV_WRAP virtual void setSorIterations(int val) = 0;
+
+ /** @brief Relaxation factor in SOR
+ @see setOmega */
+ CV_WRAP virtual float getOmega() const = 0;
+ /** @copybrief getOmega @see getOmega */
+ CV_WRAP virtual void setOmega(float val) = 0;
+
+ /** @brief Weight of the smoothness term
+ @see setAlpha */
+ CV_WRAP virtual float getAlpha() const = 0;
+ /** @copybrief getAlpha @see getAlpha */
+ CV_WRAP virtual void setAlpha(float val) = 0;
+
+ /** @brief Weight of the color constancy term
+ @see setDelta */
+ CV_WRAP virtual float getDelta() const = 0;
+ /** @copybrief getDelta @see getDelta */
+ CV_WRAP virtual void setDelta(float val) = 0;
+
+ /** @brief Weight of the gradient constancy term
+ @see setGamma */
+ CV_WRAP virtual float getGamma() const = 0;
+ /** @copybrief getGamma @see getGamma */
+ CV_WRAP virtual void setGamma(float val) = 0;
+};
+
+/** @brief Creates an instance of VariationalRefinement
+*/
+CV_EXPORTS_W Ptr<VariationalRefinement> createVariationalFlowRefinement();
+
+/** @brief DeepFlow optical flow algorithm implementation.
+
+The class implements the DeepFlow optical flow algorithm described in @cite Weinzaepfel2013 . See
+also <http://lear.inrialpes.fr/src/deepmatching/> .
+Parameters - class fields - that may be modified after creating a class instance:
+- member float alpha
+Smoothness assumption weight
+- member float delta
+Color constancy assumption weight
+- member float gamma
+Gradient constancy weight
+- member float sigma
+Gaussian smoothing parameter
+- member int minSize
+Minimal dimension of an image in the pyramid (next, smaller images in the pyramid are generated
+until one of the dimensions reaches this size)
+- member float downscaleFactor
+Scaling factor in the image pyramid (must be \< 1)
+- member int fixedPointIterations
+How many iterations on each level of the pyramid
+- member int sorIterations
+Iterations of Succesive Over-Relaxation (solver)
+- member float omega
+Relaxation factor in SOR
+ */
+CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_DeepFlow();
+
+//! Additional interface to the SimpleFlow algorithm - calcOpticalFlowSF()
+CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_SimpleFlow();
+
+//! Additional interface to the Farneback's algorithm - calcOpticalFlowFarneback()
+CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_Farneback();
+
+//! Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense()
+CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_SparseToDense();
+
+/** @brief DIS optical flow algorithm.
+
+This class implements the Dense Inverse Search (DIS) optical flow algorithm. More
+details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected
+parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is
+still relatively fast, use DeepFlow if you need better quality and don't care about speed.
+
+This implementation includes several additional features compared to the algorithm described in the paper,
+including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to
+utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation,
+if the previous frame's flow field is passed).
+*/
+class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow
+{
+public:
+ enum
+ {
+ PRESET_ULTRAFAST = 0,
+ PRESET_FAST = 1,
+ PRESET_MEDIUM = 2
+ };
+
+ /** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level
+ corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.
+ @see setFinestScale */
+ CV_WRAP virtual int getFinestScale() const = 0;
+ /** @copybrief getFinestScale @see getFinestScale */
+ CV_WRAP virtual void setFinestScale(int val) = 0;
+
+ /** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
+ enough in most cases.
+ @see setPatchSize */
+ CV_WRAP virtual int getPatchSize() const = 0;
+ /** @copybrief getPatchSize @see getPatchSize */
+ CV_WRAP virtual void setPatchSize(int val) = 0;
+
+ /** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond
+ to higher flow quality.
+ @see setPatchStride */
+ CV_WRAP virtual int getPatchStride() const = 0;
+ /** @copybrief getPatchStride @see getPatchStride */
+ CV_WRAP virtual void setPatchStride(int val) = 0;
+
+ /** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
+ may improve quality in some cases.
+ @see setGradientDescentIterations */
+ CV_WRAP virtual int getGradientDescentIterations() const = 0;
+ /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
+ CV_WRAP virtual void setGradientDescentIterations(int val) = 0;
+
+ /** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to
+ disable variational refinement completely. Higher values will typically result in more smooth and
+ high-quality flow.
+ @see setGradientDescentIterations */
+ CV_WRAP virtual int getVariationalRefinementIterations() const = 0;
+ /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
+ CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0;
+
+ /** @brief Weight of the smoothness term
+ @see setVariationalRefinementAlpha */
+ CV_WRAP virtual float getVariationalRefinementAlpha() const = 0;
+ /** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */
+ CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0;
+
+ /** @brief Weight of the color constancy term
+ @see setVariationalRefinementDelta */
+ CV_WRAP virtual float getVariationalRefinementDelta() const = 0;
+ /** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */
+ CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0;
+
+ /** @brief Weight of the gradient constancy term
+ @see setVariationalRefinementGamma */
+ CV_WRAP virtual float getVariationalRefinementGamma() const = 0;
+ /** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */
+ CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0;
+
+
+ /** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on
+ by default as it typically provides a noticeable quality boost because of increased robustness to
+ illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
+ in illumination.
+ @see setUseMeanNormalization */
+ CV_WRAP virtual bool getUseMeanNormalization() const = 0;
+ /** @copybrief getUseMeanNormalization @see getUseMeanNormalization */
+ CV_WRAP virtual void setUseMeanNormalization(bool val) = 0;
+
+ /** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by
+ default, as it tends to work better on average and can sometimes help recover from major errors
+ introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
+ option off can make the output flow field a bit smoother, however.
+ @see setUseSpatialPropagation */
+ CV_WRAP virtual bool getUseSpatialPropagation() const = 0;
+ /** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */
+ CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0;
+};
+
+/** @brief Creates an instance of DISOpticalFlow
+
+@param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM
+*/
+CV_EXPORTS_W Ptr<DISOpticalFlow> createOptFlow_DIS(int preset = DISOpticalFlow::PRESET_FAST);
+
+//! @}
+
+} //optflow
+}
+
+#include "opencv2/optflow/motempl.hpp"
+
+#endif