diff options
Diffstat (limited to 'thirdparty1/linux/include/opencv2/flann/result_set.h')
-rw-r--r-- | thirdparty1/linux/include/opencv2/flann/result_set.h | 543 |
1 files changed, 543 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/flann/result_set.h b/thirdparty1/linux/include/opencv2/flann/result_set.h new file mode 100644 index 0000000..9750019 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/result_set.h @@ -0,0 +1,543 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_RESULTSET_H +#define OPENCV_FLANN_RESULTSET_H + +#include <algorithm> +#include <cstring> +#include <iostream> +#include <limits> +#include <set> +#include <vector> + +namespace cvflann +{ + +/* This record represents a branch point when finding neighbors in + the tree. It contains a record of the minimum distance to the query + point, as well as the node at which the search resumes. + */ + +template <typename T, typename DistanceType> +struct BranchStruct +{ + T node; /* Tree node at which search resumes */ + DistanceType mindist; /* Minimum distance to query for all nodes below. */ + + BranchStruct() {} + BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {} + + bool operator<(const BranchStruct<T, DistanceType>& rhs) const + { + return mindist<rhs.mindist; + } +}; + + +template <typename DistanceType> +class ResultSet +{ +public: + virtual ~ResultSet() {} + + virtual bool full() const = 0; + + virtual void addPoint(DistanceType dist, int index) = 0; + + virtual DistanceType worstDist() const = 0; + +}; + +/** + * KNNSimpleResultSet does not ensure that the element it holds are unique. + * Is used in those cases where the nearest neighbour algorithm used does not + * attempt to insert the same element multiple times. + */ +template <typename DistanceType> +class KNNSimpleResultSet : public ResultSet<DistanceType> +{ + int* indices; + DistanceType* dists; + int capacity; + int count; + DistanceType worst_distance_; + +public: + KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0) + { + } + + void init(int* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + worst_distance_ = (std::numeric_limits<DistanceType>::max)(); + dists[capacity-1] = worst_distance_; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return count == capacity; + } + + + void addPoint(DistanceType dist, int index) + { + if (dist >= worst_distance_) return; + int i; + for (i=count; i>0; --i) { +#ifdef FLANN_FIRST_MATCH + if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) ) +#else + if (dists[i-1]>dist) +#endif + { + if (i<capacity) { + dists[i] = dists[i-1]; + indices[i] = indices[i-1]; + } + } + else break; + } + if (count < capacity) ++count; + dists[i] = dist; + indices[i] = index; + worst_distance_ = dists[capacity-1]; + } + + DistanceType worstDist() const + { + return worst_distance_; + } +}; + +/** + * K-Nearest neighbour result set. Ensures that the elements inserted are unique + */ +template <typename DistanceType> +class KNNResultSet : public ResultSet<DistanceType> +{ + int* indices; + DistanceType* dists; + int capacity; + int count; + DistanceType worst_distance_; + +public: + KNNResultSet(int capacity_) : capacity(capacity_), count(0) + { + } + + void init(int* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + worst_distance_ = (std::numeric_limits<DistanceType>::max)(); + dists[capacity-1] = worst_distance_; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return count == capacity; + } + + + void addPoint(DistanceType dist, int index) + { + if (dist >= worst_distance_) return; + int i; + for (i = count; i > 0; --i) { +#ifdef FLANN_FIRST_MATCH + if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) ) +#else + if (dists[i-1]<=dist) +#endif + { + // Check for duplicate indices + int j = i - 1; + while ((j >= 0) && (dists[j] == dist)) { + if (indices[j] == index) { + return; + } + --j; + } + break; + } + } + + if (count < capacity) ++count; + for (int j = count-1; j > i; --j) { + dists[j] = dists[j-1]; + indices[j] = indices[j-1]; + } + dists[i] = dist; + indices[i] = index; + worst_distance_ = dists[capacity-1]; + } + + DistanceType worstDist() const + { + return worst_distance_; + } +}; + + +/** + * A result-set class used when performing a radius based search. + */ +template <typename DistanceType> +class RadiusResultSet : public ResultSet<DistanceType> +{ + DistanceType radius; + int* indices; + DistanceType* dists; + size_t capacity; + size_t count; + +public: + RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) : + radius(radius_), indices(indices_), dists(dists_), capacity(capacity_) + { + init(); + } + + ~RadiusResultSet() + { + } + + void init() + { + count = 0; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return true; + } + + void addPoint(DistanceType dist, int index) + { + if (dist<radius) { + if ((capacity>0)&&(count < capacity)) { + dists[count] = dist; + indices[count] = index; + } + count++; + } + } + + DistanceType worstDist() const + { + return radius; + } + +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors + * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays + */ +template<typename DistanceType> +class UniqueResultSet : public ResultSet<DistanceType> +{ +public: + struct DistIndex + { + DistIndex(DistanceType dist, unsigned int index) : + dist_(dist), index_(index) + { + } + bool operator<(const DistIndex dist_index) const + { + return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_); + } + DistanceType dist_; + unsigned int index_; + }; + + /** Default cosntructor */ + UniqueResultSet() : + worst_distance_(std::numeric_limits<DistanceType>::max()) + { + } + + /** Check the status of the set + * @return true if we have k NN + */ + inline bool full() const + { + return is_full_; + } + + /** Remove all elements in the set + */ + virtual void clear() = 0; + + /** Copy the set to two C arrays + * @param indices pointer to a C array of indices + * @param dist pointer to a C array of distances + * @param n_neighbors the number of neighbors to copy + */ + virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const + { + if (n_neighbors < 0) { + for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end = + dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) { + *indices = dist_index->index_; + *dist = dist_index->dist_; + } + } + else { + int i = 0; + for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end = + dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) { + *indices = dist_index->index_; + *dist = dist_index->dist_; + } + } + } + + /** Copy the set to two C arrays but sort it according to the distance first + * @param indices pointer to a C array of indices + * @param dist pointer to a C array of distances + * @param n_neighbors the number of neighbors to copy + */ + virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const + { + copy(indices, dist, n_neighbors); + } + + /** The number of neighbors in the set + * @return + */ + size_t size() const + { + return dist_indices_.size(); + } + + /** The distance of the furthest neighbor + * If we don't have enough neighbors, it returns the max possible value + * @return + */ + inline DistanceType worstDist() const + { + return worst_distance_; + } +protected: + /** Flag to say if the set is full */ + bool is_full_; + + /** The worst distance found so far */ + DistanceType worst_distance_; + + /** The best candidates so far */ + std::set<DistIndex> dist_indices_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors + * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays + */ +template<typename DistanceType> +class KNNUniqueResultSet : public UniqueResultSet<DistanceType> +{ +public: + /** Constructor + * @param capacity the number of neighbors to store at max + */ + KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity) + { + this->is_full_ = false; + this->clear(); + } + + /** Add a possible candidate to the best neighbors + * @param dist distance for that neighbor + * @param index index of that neighbor + */ + inline void addPoint(DistanceType dist, int index) + { + // Don't do anything if we are worse than the worst + if (dist >= worst_distance_) return; + dist_indices_.insert(DistIndex(dist, index)); + + if (is_full_) { + if (dist_indices_.size() > capacity_) { + dist_indices_.erase(*dist_indices_.rbegin()); + worst_distance_ = dist_indices_.rbegin()->dist_; + } + } + else if (dist_indices_.size() == capacity_) { + is_full_ = true; + worst_distance_ = dist_indices_.rbegin()->dist_; + } + } + + /** Remove all elements in the set + */ + void clear() + { + dist_indices_.clear(); + worst_distance_ = std::numeric_limits<DistanceType>::max(); + is_full_ = false; + } + +protected: + typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex; + using UniqueResultSet<DistanceType>::is_full_; + using UniqueResultSet<DistanceType>::worst_distance_; + using UniqueResultSet<DistanceType>::dist_indices_; + + /** The number of neighbors to keep */ + unsigned int capacity_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the radius nearest neighbors + * It is more accurate than RadiusResult as it is not limited in the number of neighbors + */ +template<typename DistanceType> +class RadiusUniqueResultSet : public UniqueResultSet<DistanceType> +{ +public: + /** Constructor + * @param radius the maximum distance of a neighbor + */ + RadiusUniqueResultSet(DistanceType radius) : + radius_(radius) + { + is_full_ = true; + } + + /** Add a possible candidate to the best neighbors + * @param dist distance for that neighbor + * @param index index of that neighbor + */ + void addPoint(DistanceType dist, int index) + { + if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index)); + } + + /** Remove all elements in the set + */ + inline void clear() + { + dist_indices_.clear(); + } + + + /** Check the status of the set + * @return alwys false + */ + inline bool full() const + { + return true; + } + + /** The distance of the furthest neighbor + * If we don't have enough neighbors, it returns the max possible value + * @return + */ + inline DistanceType worstDist() const + { + return radius_; + } +private: + typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex; + using UniqueResultSet<DistanceType>::dist_indices_; + using UniqueResultSet<DistanceType>::is_full_; + + /** The furthest distance a neighbor can be */ + DistanceType radius_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors within a radius distance + */ +template<typename DistanceType> +class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType> +{ +public: + /** Constructor + * @param capacity the number of neighbors to store at max + * @param radius the maximum distance of a neighbor + */ + KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius) + { + this->capacity_ = capacity; + this->radius_ = radius; + this->dist_indices_.reserve(capacity_); + this->clear(); + } + + /** Remove all elements in the set + */ + void clear() + { + dist_indices_.clear(); + worst_distance_ = radius_; + is_full_ = false; + } +private: + using KNNUniqueResultSet<DistanceType>::dist_indices_; + using KNNUniqueResultSet<DistanceType>::is_full_; + using KNNUniqueResultSet<DistanceType>::worst_distance_; + + /** The maximum number of neighbors to consider */ + unsigned int capacity_; + + /** The maximum distance of a neighbor */ + DistanceType radius_; +}; +} + +#endif //OPENCV_FLANN_RESULTSET_H |