summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/flann/result_set.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty1/linux/include/opencv2/flann/result_set.h')
-rw-r--r--thirdparty1/linux/include/opencv2/flann/result_set.h543
1 files changed, 543 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/flann/result_set.h b/thirdparty1/linux/include/opencv2/flann/result_set.h
new file mode 100644
index 0000000..9750019
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/flann/result_set.h
@@ -0,0 +1,543 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_RESULTSET_H
+#define OPENCV_FLANN_RESULTSET_H
+
+#include <algorithm>
+#include <cstring>
+#include <iostream>
+#include <limits>
+#include <set>
+#include <vector>
+
+namespace cvflann
+{
+
+/* This record represents a branch point when finding neighbors in
+ the tree. It contains a record of the minimum distance to the query
+ point, as well as the node at which the search resumes.
+ */
+
+template <typename T, typename DistanceType>
+struct BranchStruct
+{
+ T node; /* Tree node at which search resumes */
+ DistanceType mindist; /* Minimum distance to query for all nodes below. */
+
+ BranchStruct() {}
+ BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
+
+ bool operator<(const BranchStruct<T, DistanceType>& rhs) const
+ {
+ return mindist<rhs.mindist;
+ }
+};
+
+
+template <typename DistanceType>
+class ResultSet
+{
+public:
+ virtual ~ResultSet() {}
+
+ virtual bool full() const = 0;
+
+ virtual void addPoint(DistanceType dist, int index) = 0;
+
+ virtual DistanceType worstDist() const = 0;
+
+};
+
+/**
+ * KNNSimpleResultSet does not ensure that the element it holds are unique.
+ * Is used in those cases where the nearest neighbour algorithm used does not
+ * attempt to insert the same element multiple times.
+ */
+template <typename DistanceType>
+class KNNSimpleResultSet : public ResultSet<DistanceType>
+{
+ int* indices;
+ DistanceType* dists;
+ int capacity;
+ int count;
+ DistanceType worst_distance_;
+
+public:
+ KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
+ {
+ }
+
+ void init(int* indices_, DistanceType* dists_)
+ {
+ indices = indices_;
+ dists = dists_;
+ count = 0;
+ worst_distance_ = (std::numeric_limits<DistanceType>::max)();
+ dists[capacity-1] = worst_distance_;
+ }
+
+ size_t size() const
+ {
+ return count;
+ }
+
+ bool full() const
+ {
+ return count == capacity;
+ }
+
+
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist >= worst_distance_) return;
+ int i;
+ for (i=count; i>0; --i) {
+#ifdef FLANN_FIRST_MATCH
+ if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
+#else
+ if (dists[i-1]>dist)
+#endif
+ {
+ if (i<capacity) {
+ dists[i] = dists[i-1];
+ indices[i] = indices[i-1];
+ }
+ }
+ else break;
+ }
+ if (count < capacity) ++count;
+ dists[i] = dist;
+ indices[i] = index;
+ worst_distance_ = dists[capacity-1];
+ }
+
+ DistanceType worstDist() const
+ {
+ return worst_distance_;
+ }
+};
+
+/**
+ * K-Nearest neighbour result set. Ensures that the elements inserted are unique
+ */
+template <typename DistanceType>
+class KNNResultSet : public ResultSet<DistanceType>
+{
+ int* indices;
+ DistanceType* dists;
+ int capacity;
+ int count;
+ DistanceType worst_distance_;
+
+public:
+ KNNResultSet(int capacity_) : capacity(capacity_), count(0)
+ {
+ }
+
+ void init(int* indices_, DistanceType* dists_)
+ {
+ indices = indices_;
+ dists = dists_;
+ count = 0;
+ worst_distance_ = (std::numeric_limits<DistanceType>::max)();
+ dists[capacity-1] = worst_distance_;
+ }
+
+ size_t size() const
+ {
+ return count;
+ }
+
+ bool full() const
+ {
+ return count == capacity;
+ }
+
+
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist >= worst_distance_) return;
+ int i;
+ for (i = count; i > 0; --i) {
+#ifdef FLANN_FIRST_MATCH
+ if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
+#else
+ if (dists[i-1]<=dist)
+#endif
+ {
+ // Check for duplicate indices
+ int j = i - 1;
+ while ((j >= 0) && (dists[j] == dist)) {
+ if (indices[j] == index) {
+ return;
+ }
+ --j;
+ }
+ break;
+ }
+ }
+
+ if (count < capacity) ++count;
+ for (int j = count-1; j > i; --j) {
+ dists[j] = dists[j-1];
+ indices[j] = indices[j-1];
+ }
+ dists[i] = dist;
+ indices[i] = index;
+ worst_distance_ = dists[capacity-1];
+ }
+
+ DistanceType worstDist() const
+ {
+ return worst_distance_;
+ }
+};
+
+
+/**
+ * A result-set class used when performing a radius based search.
+ */
+template <typename DistanceType>
+class RadiusResultSet : public ResultSet<DistanceType>
+{
+ DistanceType radius;
+ int* indices;
+ DistanceType* dists;
+ size_t capacity;
+ size_t count;
+
+public:
+ RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
+ radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
+ {
+ init();
+ }
+
+ ~RadiusResultSet()
+ {
+ }
+
+ void init()
+ {
+ count = 0;
+ }
+
+ size_t size() const
+ {
+ return count;
+ }
+
+ bool full() const
+ {
+ return true;
+ }
+
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist<radius) {
+ if ((capacity>0)&&(count < capacity)) {
+ dists[count] = dist;
+ indices[count] = index;
+ }
+ count++;
+ }
+ }
+
+ DistanceType worstDist() const
+ {
+ return radius;
+ }
+
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the k NN neighbors
+ * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
+ */
+template<typename DistanceType>
+class UniqueResultSet : public ResultSet<DistanceType>
+{
+public:
+ struct DistIndex
+ {
+ DistIndex(DistanceType dist, unsigned int index) :
+ dist_(dist), index_(index)
+ {
+ }
+ bool operator<(const DistIndex dist_index) const
+ {
+ return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
+ }
+ DistanceType dist_;
+ unsigned int index_;
+ };
+
+ /** Default cosntructor */
+ UniqueResultSet() :
+ worst_distance_(std::numeric_limits<DistanceType>::max())
+ {
+ }
+
+ /** Check the status of the set
+ * @return true if we have k NN
+ */
+ inline bool full() const
+ {
+ return is_full_;
+ }
+
+ /** Remove all elements in the set
+ */
+ virtual void clear() = 0;
+
+ /** Copy the set to two C arrays
+ * @param indices pointer to a C array of indices
+ * @param dist pointer to a C array of distances
+ * @param n_neighbors the number of neighbors to copy
+ */
+ virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
+ {
+ if (n_neighbors < 0) {
+ for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
+ dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
+ *indices = dist_index->index_;
+ *dist = dist_index->dist_;
+ }
+ }
+ else {
+ int i = 0;
+ for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
+ dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
+ *indices = dist_index->index_;
+ *dist = dist_index->dist_;
+ }
+ }
+ }
+
+ /** Copy the set to two C arrays but sort it according to the distance first
+ * @param indices pointer to a C array of indices
+ * @param dist pointer to a C array of distances
+ * @param n_neighbors the number of neighbors to copy
+ */
+ virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
+ {
+ copy(indices, dist, n_neighbors);
+ }
+
+ /** The number of neighbors in the set
+ * @return
+ */
+ size_t size() const
+ {
+ return dist_indices_.size();
+ }
+
+ /** The distance of the furthest neighbor
+ * If we don't have enough neighbors, it returns the max possible value
+ * @return
+ */
+ inline DistanceType worstDist() const
+ {
+ return worst_distance_;
+ }
+protected:
+ /** Flag to say if the set is full */
+ bool is_full_;
+
+ /** The worst distance found so far */
+ DistanceType worst_distance_;
+
+ /** The best candidates so far */
+ std::set<DistIndex> dist_indices_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the k NN neighbors
+ * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
+ */
+template<typename DistanceType>
+class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
+{
+public:
+ /** Constructor
+ * @param capacity the number of neighbors to store at max
+ */
+ KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
+ {
+ this->is_full_ = false;
+ this->clear();
+ }
+
+ /** Add a possible candidate to the best neighbors
+ * @param dist distance for that neighbor
+ * @param index index of that neighbor
+ */
+ inline void addPoint(DistanceType dist, int index)
+ {
+ // Don't do anything if we are worse than the worst
+ if (dist >= worst_distance_) return;
+ dist_indices_.insert(DistIndex(dist, index));
+
+ if (is_full_) {
+ if (dist_indices_.size() > capacity_) {
+ dist_indices_.erase(*dist_indices_.rbegin());
+ worst_distance_ = dist_indices_.rbegin()->dist_;
+ }
+ }
+ else if (dist_indices_.size() == capacity_) {
+ is_full_ = true;
+ worst_distance_ = dist_indices_.rbegin()->dist_;
+ }
+ }
+
+ /** Remove all elements in the set
+ */
+ void clear()
+ {
+ dist_indices_.clear();
+ worst_distance_ = std::numeric_limits<DistanceType>::max();
+ is_full_ = false;
+ }
+
+protected:
+ typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
+ using UniqueResultSet<DistanceType>::is_full_;
+ using UniqueResultSet<DistanceType>::worst_distance_;
+ using UniqueResultSet<DistanceType>::dist_indices_;
+
+ /** The number of neighbors to keep */
+ unsigned int capacity_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the radius nearest neighbors
+ * It is more accurate than RadiusResult as it is not limited in the number of neighbors
+ */
+template<typename DistanceType>
+class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
+{
+public:
+ /** Constructor
+ * @param radius the maximum distance of a neighbor
+ */
+ RadiusUniqueResultSet(DistanceType radius) :
+ radius_(radius)
+ {
+ is_full_ = true;
+ }
+
+ /** Add a possible candidate to the best neighbors
+ * @param dist distance for that neighbor
+ * @param index index of that neighbor
+ */
+ void addPoint(DistanceType dist, int index)
+ {
+ if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
+ }
+
+ /** Remove all elements in the set
+ */
+ inline void clear()
+ {
+ dist_indices_.clear();
+ }
+
+
+ /** Check the status of the set
+ * @return alwys false
+ */
+ inline bool full() const
+ {
+ return true;
+ }
+
+ /** The distance of the furthest neighbor
+ * If we don't have enough neighbors, it returns the max possible value
+ * @return
+ */
+ inline DistanceType worstDist() const
+ {
+ return radius_;
+ }
+private:
+ typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
+ using UniqueResultSet<DistanceType>::dist_indices_;
+ using UniqueResultSet<DistanceType>::is_full_;
+
+ /** The furthest distance a neighbor can be */
+ DistanceType radius_;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/** Class that holds the k NN neighbors within a radius distance
+ */
+template<typename DistanceType>
+class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
+{
+public:
+ /** Constructor
+ * @param capacity the number of neighbors to store at max
+ * @param radius the maximum distance of a neighbor
+ */
+ KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
+ {
+ this->capacity_ = capacity;
+ this->radius_ = radius;
+ this->dist_indices_.reserve(capacity_);
+ this->clear();
+ }
+
+ /** Remove all elements in the set
+ */
+ void clear()
+ {
+ dist_indices_.clear();
+ worst_distance_ = radius_;
+ is_full_ = false;
+ }
+private:
+ using KNNUniqueResultSet<DistanceType>::dist_indices_;
+ using KNNUniqueResultSet<DistanceType>::is_full_;
+ using KNNUniqueResultSet<DistanceType>::worst_distance_;
+
+ /** The maximum number of neighbors to consider */
+ unsigned int capacity_;
+
+ /** The maximum distance of a neighbor */
+ DistanceType radius_;
+};
+}
+
+#endif //OPENCV_FLANN_RESULTSET_H