summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/flann/kdtree_index.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty1/linux/include/opencv2/flann/kdtree_index.h')
-rw-r--r--thirdparty1/linux/include/opencv2/flann/kdtree_index.h621
1 files changed, 621 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/flann/kdtree_index.h b/thirdparty1/linux/include/opencv2/flann/kdtree_index.h
new file mode 100644
index 0000000..dc0971c
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/flann/kdtree_index.h
@@ -0,0 +1,621 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
+#define OPENCV_FLANN_KDTREE_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <cstring>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dynamic_bitset.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+
+namespace cvflann
+{
+
+struct KDTreeIndexParams : public IndexParams
+{
+ KDTreeIndexParams(int trees = 4)
+ {
+ (*this)["algorithm"] = FLANN_INDEX_KDTREE;
+ (*this)["trees"] = trees;
+ }
+};
+
+
+/**
+ * Randomized kd-tree index
+ *
+ * Contains the k-d trees and other information for indexing a set of points
+ * for nearest-neighbor matching.
+ */
+template <typename Distance>
+class KDTreeIndex : public NNIndex<Distance>
+{
+public:
+ typedef typename Distance::ElementType ElementType;
+ typedef typename Distance::ResultType DistanceType;
+
+
+ /**
+ * KDTree constructor
+ *
+ * Params:
+ * inputData = dataset with the input features
+ * params = parameters passed to the kdtree algorithm
+ */
+ KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
+ Distance d = Distance() ) :
+ dataset_(inputData), index_params_(params), distance_(d)
+ {
+ size_ = dataset_.rows;
+ veclen_ = dataset_.cols;
+
+ trees_ = get_param(index_params_,"trees",4);
+ tree_roots_ = new NodePtr[trees_];
+
+ // Create a permutable array of indices to the input vectors.
+ vind_.resize(size_);
+ for (size_t i = 0; i < size_; ++i) {
+ vind_[i] = int(i);
+ }
+
+ mean_ = new DistanceType[veclen_];
+ var_ = new DistanceType[veclen_];
+ }
+
+
+ KDTreeIndex(const KDTreeIndex&);
+ KDTreeIndex& operator=(const KDTreeIndex&);
+
+ /**
+ * Standard destructor
+ */
+ ~KDTreeIndex()
+ {
+ if (tree_roots_!=NULL) {
+ delete[] tree_roots_;
+ }
+ delete[] mean_;
+ delete[] var_;
+ }
+
+ /**
+ * Builds the index
+ */
+ void buildIndex()
+ {
+ /* Construct the randomized trees. */
+ for (int i = 0; i < trees_; i++) {
+ /* Randomize the order of vectors to allow for unbiased sampling. */
+ std::random_shuffle(vind_.begin(), vind_.end());
+ tree_roots_[i] = divideTree(&vind_[0], int(size_) );
+ }
+ }
+
+
+ flann_algorithm_t getType() const
+ {
+ return FLANN_INDEX_KDTREE;
+ }
+
+
+ void saveIndex(FILE* stream)
+ {
+ save_value(stream, trees_);
+ for (int i=0; i<trees_; ++i) {
+ save_tree(stream, tree_roots_[i]);
+ }
+ }
+
+
+
+ void loadIndex(FILE* stream)
+ {
+ load_value(stream, trees_);
+ if (tree_roots_!=NULL) {
+ delete[] tree_roots_;
+ }
+ tree_roots_ = new NodePtr[trees_];
+ for (int i=0; i<trees_; ++i) {
+ load_tree(stream,tree_roots_[i]);
+ }
+
+ index_params_["algorithm"] = getType();
+ index_params_["trees"] = tree_roots_;
+ }
+
+ /**
+ * Returns size of index.
+ */
+ size_t size() const
+ {
+ return size_;
+ }
+
+ /**
+ * Returns the length of an index feature.
+ */
+ size_t veclen() const
+ {
+ return veclen_;
+ }
+
+ /**
+ * Computes the inde memory usage
+ * Returns: memory used by the index
+ */
+ int usedMemory() const
+ {
+ return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory
+ }
+
+ /**
+ * Find set of nearest neighbors to vec. Their indices are stored inside
+ * the result object.
+ *
+ * Params:
+ * result = the result object in which the indices of the nearest-neighbors are stored
+ * vec = the vector for which to search the nearest neighbors
+ * maxCheck = the maximum number of restarts (in a best-bin-first manner)
+ */
+ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+ {
+ int maxChecks = get_param(searchParams,"checks", 32);
+ float epsError = 1+get_param(searchParams,"eps",0.0f);
+
+ if (maxChecks==FLANN_CHECKS_UNLIMITED) {
+ getExactNeighbors(result, vec, epsError);
+ }
+ else {
+ getNeighbors(result, vec, maxChecks, epsError);
+ }
+ }
+
+ IndexParams getParameters() const
+ {
+ return index_params_;
+ }
+
+private:
+
+
+ /*--------------------- Internal Data Structures --------------------------*/
+ struct Node
+ {
+ /**
+ * Dimension used for subdivision.
+ */
+ int divfeat;
+ /**
+ * The values used for subdivision.
+ */
+ DistanceType divval;
+ /**
+ * The child nodes.
+ */
+ Node* child1, * child2;
+ };
+ typedef Node* NodePtr;
+ typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+ typedef BranchSt* Branch;
+
+
+
+ void save_tree(FILE* stream, NodePtr tree)
+ {
+ save_value(stream, *tree);
+ if (tree->child1!=NULL) {
+ save_tree(stream, tree->child1);
+ }
+ if (tree->child2!=NULL) {
+ save_tree(stream, tree->child2);
+ }
+ }
+
+
+ void load_tree(FILE* stream, NodePtr& tree)
+ {
+ tree = pool_.allocate<Node>();
+ load_value(stream, *tree);
+ if (tree->child1!=NULL) {
+ load_tree(stream, tree->child1);
+ }
+ if (tree->child2!=NULL) {
+ load_tree(stream, tree->child2);
+ }
+ }
+
+
+ /**
+ * Create a tree node that subdivides the list of vecs from vind[first]
+ * to vind[last]. The routine is called recursively on each sublist.
+ * Place a pointer to this new tree node in the location pTree.
+ *
+ * Params: pTree = the new node to create
+ * first = index of the first vector
+ * last = index of the last vector
+ */
+ NodePtr divideTree(int* ind, int count)
+ {
+ NodePtr node = pool_.allocate<Node>(); // allocate memory
+
+ /* If too few exemplars remain, then make this a leaf node. */
+ if ( count == 1) {
+ node->child1 = node->child2 = NULL; /* Mark as leaf node. */
+ node->divfeat = *ind; /* Store index of this vec. */
+ }
+ else {
+ int idx;
+ int cutfeat;
+ DistanceType cutval;
+ meanSplit(ind, count, idx, cutfeat, cutval);
+
+ node->divfeat = cutfeat;
+ node->divval = cutval;
+ node->child1 = divideTree(ind, idx);
+ node->child2 = divideTree(ind+idx, count-idx);
+ }
+
+ return node;
+ }
+
+
+ /**
+ * Choose which feature to use in order to subdivide this set of vectors.
+ * Make a random choice among those with the highest variance, and use
+ * its variance as the threshold value.
+ */
+ void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
+ {
+ memset(mean_,0,veclen_*sizeof(DistanceType));
+ memset(var_,0,veclen_*sizeof(DistanceType));
+
+ /* Compute mean values. Only the first SAMPLE_MEAN values need to be
+ sampled to get a good estimate.
+ */
+ int cnt = std::min((int)SAMPLE_MEAN+1, count);
+ for (int j = 0; j < cnt; ++j) {
+ ElementType* v = dataset_[ind[j]];
+ for (size_t k=0; k<veclen_; ++k) {
+ mean_[k] += v[k];
+ }
+ }
+ for (size_t k=0; k<veclen_; ++k) {
+ mean_[k] /= cnt;
+ }
+
+ /* Compute variances (no need to divide by count). */
+ for (int j = 0; j < cnt; ++j) {
+ ElementType* v = dataset_[ind[j]];
+ for (size_t k=0; k<veclen_; ++k) {
+ DistanceType dist = v[k] - mean_[k];
+ var_[k] += dist * dist;
+ }
+ }
+ /* Select one of the highest variance indices at random. */
+ cutfeat = selectDivision(var_);
+ cutval = mean_[cutfeat];
+
+ int lim1, lim2;
+ planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
+
+ if (lim1>count/2) index = lim1;
+ else if (lim2<count/2) index = lim2;
+ else index = count/2;
+
+ /* If either list is empty, it means that all remaining features
+ * are identical. Split in the middle to maintain a balanced tree.
+ */
+ if ((lim1==count)||(lim2==0)) index = count/2;
+ }
+
+
+ /**
+ * Select the top RAND_DIM largest values from v and return the index of
+ * one of these selected at random.
+ */
+ int selectDivision(DistanceType* v)
+ {
+ int num = 0;
+ size_t topind[RAND_DIM];
+
+ /* Create a list of the indices of the top RAND_DIM values. */
+ for (size_t i = 0; i < veclen_; ++i) {
+ if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
+ /* Put this element at end of topind. */
+ if (num < RAND_DIM) {
+ topind[num++] = i; /* Add to list. */
+ }
+ else {
+ topind[num-1] = i; /* Replace last element. */
+ }
+ /* Bubble end value down to right location by repeated swapping. */
+ int j = num - 1;
+ while (j > 0 && v[topind[j]] > v[topind[j-1]]) {
+ std::swap(topind[j], topind[j-1]);
+ --j;
+ }
+ }
+ }
+ /* Select a random integer in range [0,num-1], and return that index. */
+ int rnd = rand_int(num);
+ return (int)topind[rnd];
+ }
+
+
+ /**
+ * Subdivide the list of points by a plane perpendicular on axe corresponding
+ * to the 'cutfeat' dimension at 'cutval' position.
+ *
+ * On return:
+ * dataset[ind[0..lim1-1]][cutfeat]<cutval
+ * dataset[ind[lim1..lim2-1]][cutfeat]==cutval
+ * dataset[ind[lim2..count]][cutfeat]>cutval
+ */
+ void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
+ {
+ /* Move vector indices for left subtree to front of list. */
+ int left = 0;
+ int right = count-1;
+ for (;; ) {
+ while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
+ while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
+ if (left>right) break;
+ std::swap(ind[left], ind[right]); ++left; --right;
+ }
+ lim1 = left;
+ right = count-1;
+ for (;; ) {
+ while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
+ while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
+ if (left>right) break;
+ std::swap(ind[left], ind[right]); ++left; --right;
+ }
+ lim2 = left;
+ }
+
+ /**
+ * Performs an exact nearest neighbor search. The exact search performs a full
+ * traversal of the tree.
+ */
+ void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
+ {
+ // checkID -= 1; /* Set a different unique ID for each search. */
+
+ if (trees_ > 1) {
+ fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
+ }
+ if (trees_>0) {
+ searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
+ }
+ assert(result.full());
+ }
+
+ /**
+ * Performs the approximate nearest-neighbor search. The search is approximate
+ * because the tree traversal is abandoned after a given number of descends in
+ * the tree.
+ */
+ void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
+ {
+ int i;
+ BranchSt branch;
+
+ int checkCount = 0;
+ Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+ DynamicBitset checked(size_);
+
+ /* Search once through each tree down to root. */
+ for (i = 0; i < trees_; ++i) {
+ searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
+ }
+
+ /* Keep searching other branches from heap until finished. */
+ while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
+ searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
+ }
+
+ delete heap;
+
+ assert(result.full());
+ }
+
+
+ /**
+ * Search starting from a given node of the tree. Based on any mismatches at
+ * higher levels, all exemplars below this level must have a distance of
+ * at least "mindistsq".
+ */
+ void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
+ float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
+ {
+ if (result_set.worstDist()<mindist) {
+ // printf("Ignoring branch, too far\n");
+ return;
+ }
+
+ /* If this is a leaf node, then do check and return. */
+ if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+ /* Do not check same node more than once when searching multiple trees.
+ Once a vector is checked, we set its location in vind to the
+ current checkID.
+ */
+ int index = node->divfeat;
+ if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
+ checked.set(index);
+ checkCount++;
+
+ DistanceType dist = distance_(dataset_[index], vec, veclen_);
+ result_set.addPoint(dist,index);
+
+ return;
+ }
+
+ /* Which child branch should be taken first? */
+ ElementType val = vec[node->divfeat];
+ DistanceType diff = val - node->divval;
+ NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
+ NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
+
+ /* Create a branch record for the branch not taken. Add distance
+ of this feature boundary (we don't attempt to correct for any
+ use of this feature in a parent node, which is unlikely to
+ happen and would have only a small effect). Don't bother
+ adding more branches to heap after halfway point, as cost of
+ adding exceeds their value.
+ */
+
+ DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
+ // if (2 * checkCount < maxCheck || !result.full()) {
+ if ((new_distsq*epsError < result_set.worstDist())|| !result_set.full()) {
+ heap->insert( BranchSt(otherChild, new_distsq) );
+ }
+
+ /* Call recursively to search next level down. */
+ searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
+ }
+
+ /**
+ * Performs an exact search in the tree starting from a node.
+ */
+ void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
+ {
+ /* If this is a leaf node, then do check and return. */
+ if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+ int index = node->divfeat;
+ DistanceType dist = distance_(dataset_[index], vec, veclen_);
+ result_set.addPoint(dist,index);
+ return;
+ }
+
+ /* Which child branch should be taken first? */
+ ElementType val = vec[node->divfeat];
+ DistanceType diff = val - node->divval;
+ NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
+ NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
+
+ /* Create a branch record for the branch not taken. Add distance
+ of this feature boundary (we don't attempt to correct for any
+ use of this feature in a parent node, which is unlikely to
+ happen and would have only a small effect). Don't bother
+ adding more branches to heap after halfway point, as cost of
+ adding exceeds their value.
+ */
+
+ DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
+
+ /* Call recursively to search next level down. */
+ searchLevelExact(result_set, vec, bestChild, mindist, epsError);
+
+ if (new_distsq*epsError<=result_set.worstDist()) {
+ searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
+ }
+ }
+
+
+private:
+
+ enum
+ {
+ /**
+ * To improve efficiency, only SAMPLE_MEAN random values are used to
+ * compute the mean and variance at each level when building a tree.
+ * A value of 100 seems to perform as well as using all values.
+ */
+ SAMPLE_MEAN = 100,
+ /**
+ * Top random dimensions to consider
+ *
+ * When creating random trees, the dimension on which to subdivide is
+ * selected at random from among the top RAND_DIM dimensions with the
+ * highest variance. A value of 5 works well.
+ */
+ RAND_DIM=5
+ };
+
+
+ /**
+ * Number of randomized trees that are used
+ */
+ int trees_;
+
+ /**
+ * Array of indices to vectors in the dataset.
+ */
+ std::vector<int> vind_;
+
+ /**
+ * The dataset used by this index
+ */
+ const Matrix<ElementType> dataset_;
+
+ IndexParams index_params_;
+
+ size_t size_;
+ size_t veclen_;
+
+
+ DistanceType* mean_;
+ DistanceType* var_;
+
+
+ /**
+ * Array of k-d trees used to find neighbours.
+ */
+ NodePtr* tree_roots_;
+
+ /**
+ * Pooled memory allocator.
+ *
+ * Using a pooled memory allocator is more efficient
+ * than allocating memory directly when there is a large
+ * number small of memory allocations.
+ */
+ PooledAllocator pool_;
+
+ Distance distance_;
+
+
+}; // class KDTreeForest
+
+}
+
+#endif //OPENCV_FLANN_KDTREE_INDEX_H_