summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/flann/dist.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty1/linux/include/opencv2/flann/dist.h')
-rw-r--r--thirdparty1/linux/include/opencv2/flann/dist.h905
1 files changed, 905 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/flann/dist.h b/thirdparty1/linux/include/opencv2/flann/dist.h
new file mode 100644
index 0000000..9dbe527
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/flann/dist.h
@@ -0,0 +1,905 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_DIST_H_
+#define OPENCV_FLANN_DIST_H_
+
+#include <cmath>
+#include <cstdlib>
+#include <string.h>
+#ifdef _MSC_VER
+typedef unsigned __int32 uint32_t;
+typedef unsigned __int64 uint64_t;
+#else
+#include <stdint.h>
+#endif
+
+#include "defines.h"
+
+#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
+# include <Intrin.h>
+#endif
+
+#ifdef __ARM_NEON__
+# include "arm_neon.h"
+#endif
+
+namespace cvflann
+{
+
+template<typename T>
+inline T abs(T x) { return (x<0) ? -x : x; }
+
+template<>
+inline int abs<int>(int x) { return ::abs(x); }
+
+template<>
+inline float abs<float>(float x) { return fabsf(x); }
+
+template<>
+inline double abs<double>(double x) { return fabs(x); }
+
+template<typename T>
+struct Accumulator { typedef T Type; };
+template<>
+struct Accumulator<unsigned char> { typedef float Type; };
+template<>
+struct Accumulator<unsigned short> { typedef float Type; };
+template<>
+struct Accumulator<unsigned int> { typedef float Type; };
+template<>
+struct Accumulator<char> { typedef float Type; };
+template<>
+struct Accumulator<short> { typedef float Type; };
+template<>
+struct Accumulator<int> { typedef float Type; };
+
+#undef True
+#undef False
+
+class True
+{
+};
+
+class False
+{
+};
+
+
+/**
+ * Squared Euclidean distance functor.
+ *
+ * This is the simpler, unrolled version. This is preferable for
+ * very low dimensionality data (eg 3D points)
+ */
+template<class T>
+struct L2_Simple
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff;
+ for(size_t i = 0; i < size; ++i ) {
+ diff = *a++ - *b++;
+ result += diff*diff;
+ }
+ return result;
+ }
+
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return (a-b)*(a-b);
+ }
+};
+
+
+
+/**
+ * Squared Euclidean distance functor, optimized version
+ */
+template<class T>
+struct L2
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the squared Euclidean distance between two vectors.
+ *
+ * This is highly optimised, with loop unrolling, as it is one
+ * of the most expensive inner loops.
+ *
+ * The computation of squared root at the end is omitted for
+ * efficiency.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = (ResultType)(a[0] - b[0]);
+ diff1 = (ResultType)(a[1] - b[1]);
+ diff2 = (ResultType)(a[2] - b[2]);
+ diff3 = (ResultType)(a[3] - b[3]);
+ result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = (ResultType)(*a++ - *b++);
+ result += diff0 * diff0;
+ }
+ return result;
+ }
+
+ /**
+ * Partial euclidean distance, using just one dimension. This is used by the
+ * kd-tree when computing partial distances while traversing the tree.
+ *
+ * Squared root is omitted for efficiency.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return (a-b)*(a-b);
+ }
+};
+
+
+/*
+ * Manhattan distance functor, optimized version
+ */
+template<class T>
+struct L1
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the Manhattan (L_1) distance between two vectors.
+ *
+ * This is highly optimised, with loop unrolling, as it is one
+ * of the most expensive inner loops.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = (ResultType)abs(a[0] - b[0]);
+ diff1 = (ResultType)abs(a[1] - b[1]);
+ diff2 = (ResultType)abs(a[2] - b[2]);
+ diff3 = (ResultType)abs(a[3] - b[3]);
+ result += diff0 + diff1 + diff2 + diff3;
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = (ResultType)abs(*a++ - *b++);
+ result += diff0;
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return abs(a-b);
+ }
+};
+
+
+
+template<class T>
+struct MinkowskiDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ int order;
+
+ MinkowskiDistance(int order_) : order(order_) {}
+
+ /**
+ * Compute the Minkowsky (L_p) distance between two vectors.
+ *
+ * This is highly optimised, with loop unrolling, as it is one
+ * of the most expensive inner loops.
+ *
+ * The computation of squared root at the end is omitted for
+ * efficiency.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = (ResultType)abs(a[0] - b[0]);
+ diff1 = (ResultType)abs(a[1] - b[1]);
+ diff2 = (ResultType)abs(a[2] - b[2]);
+ diff3 = (ResultType)abs(a[3] - b[3]);
+ result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = (ResultType)abs(*a++ - *b++);
+ result += pow(diff0,order);
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return pow(static_cast<ResultType>(abs(a-b)),order);
+ }
+};
+
+
+
+template<class T>
+struct MaxDistance
+{
+ typedef False is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the max distance (L_infinity) between two vectors.
+ *
+ * This distance is not a valid kdtree distance, it's not dimensionwise additive.
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = abs(a[0] - b[0]);
+ diff1 = abs(a[1] - b[1]);
+ diff2 = abs(a[2] - b[2]);
+ diff3 = abs(a[3] - b[3]);
+ if (diff0>result) {result = diff0; }
+ if (diff1>result) {result = diff1; }
+ if (diff2>result) {result = diff2; }
+ if (diff3>result) {result = diff3; }
+ a += 4;
+ b += 4;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ diff0 = abs(*a++ - *b++);
+ result = (diff0>result) ? diff0 : result;
+ }
+ return result;
+ }
+
+ /* This distance functor is not dimension-wise additive, which
+ * makes it an invalid kd-tree distance, not implementing the accum_dist method */
+
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+/**
+ * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
+ * bit count of A exclusive XOR'ed with B
+ */
+struct HammingLUT
+{
+ typedef False is_kdtree_distance;
+ typedef False is_vector_space_distance;
+
+ typedef unsigned char ElementType;
+ typedef int ResultType;
+
+ /** this will count the bits in a ^ b
+ */
+ ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
+ {
+ static const uchar popCountTable[] =
+ {
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
+ };
+ ResultType result = 0;
+ for (size_t i = 0; i < size; i++) {
+ result += popCountTable[a[i] ^ b[i]];
+ }
+ return result;
+ }
+};
+
+/**
+ * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
+ * That code was taken from brief.cpp in OpenCV
+ */
+template<class T>
+struct Hamming
+{
+ typedef False is_kdtree_distance;
+ typedef False is_vector_space_distance;
+
+
+ typedef T ElementType;
+ typedef int ResultType;
+
+ template<typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+ ResultType result = 0;
+#ifdef __ARM_NEON__
+ {
+ uint32x4_t bits = vmovq_n_u32(0);
+ for (size_t i = 0; i < size; i += 16) {
+ uint8x16_t A_vec = vld1q_u8 (a + i);
+ uint8x16_t B_vec = vld1q_u8 (b + i);
+ uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
+ uint8x16_t bitsSet = vcntq_u8 (AxorB);
+ uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
+ uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
+ bits = vaddq_u32(bits, bitSet4);
+ }
+ uint64x2_t bitSet2 = vpaddlq_u32 (bits);
+ result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
+ result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
+ }
+#elif __GNUC__
+ {
+ //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
+ typedef unsigned long long pop_t;
+ const size_t modulo = size % sizeof(pop_t);
+ const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
+ const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
+ const pop_t* a2_end = a2 + (size / sizeof(pop_t));
+
+ for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
+
+ if (modulo) {
+ //in the case where size is not dividable by sizeof(size_t)
+ //need to mask off the bits at the end
+ pop_t a_final = 0, b_final = 0;
+ memcpy(&a_final, a2, modulo);
+ memcpy(&b_final, b2, modulo);
+ result += __builtin_popcountll(a_final ^ b_final);
+ }
+ }
+#else // NO NEON and NOT GNUC
+ typedef unsigned long long pop_t;
+ HammingLUT lut;
+ result = lut(reinterpret_cast<const unsigned char*> (a),
+ reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
+#endif
+ return result;
+ }
+};
+
+template<typename T>
+struct Hamming2
+{
+ typedef False is_kdtree_distance;
+ typedef False is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef int ResultType;
+
+ /** This is popcount_3() from:
+ * http://en.wikipedia.org/wiki/Hamming_weight */
+ unsigned int popcnt32(uint32_t n) const
+ {
+ n -= ((n >> 1) & 0x55555555);
+ n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
+ return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
+ }
+
+#ifdef FLANN_PLATFORM_64_BIT
+ unsigned int popcnt64(uint64_t n) const
+ {
+ n -= ((n >> 1) & 0x5555555555555555);
+ n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
+ return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
+ }
+#endif
+
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+#ifdef FLANN_PLATFORM_64_BIT
+ const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
+ const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
+ ResultType result = 0;
+ size /= (sizeof(uint64_t)/sizeof(unsigned char));
+ for(size_t i = 0; i < size; ++i ) {
+ result += popcnt64(*pa ^ *pb);
+ ++pa;
+ ++pb;
+ }
+#else
+ const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
+ const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
+ ResultType result = 0;
+ size /= (sizeof(uint32_t)/sizeof(unsigned char));
+ for(size_t i = 0; i < size; ++i ) {
+ result += popcnt32(*pa ^ *pb);
+ ++pa;
+ ++pb;
+ }
+#endif
+ return result;
+ }
+};
+
+
+
+////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+template<class T>
+struct HistIntersectionDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the histogram intersection distance
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType min0, min1, min2, min3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
+ min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
+ min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
+ min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
+ result += min0 + min1 + min2 + min3;
+ a += 4;
+ b += 4;
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ /* Process last 0-3 pixels. Not needed for standard vector lengths. */
+ while (a < last) {
+ min0 = (ResultType)(*a < *b ? *a : *b);
+ result += min0;
+ ++a;
+ ++b;
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ return a<b ? a : b;
+ }
+};
+
+
+
+template<class T>
+struct HellingerDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the Hellinger distance
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType diff0, diff1, diff2, diff3;
+ Iterator1 last = a + size;
+ Iterator1 lastgroup = last - 3;
+
+ /* Process 4 items with each loop for efficiency. */
+ while (a < lastgroup) {
+ diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
+ diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
+ diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
+ diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
+ result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
+ a += 4;
+ b += 4;
+ }
+ while (a < last) {
+ diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
+ result += diff0 * diff0;
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
+ return diff * diff;
+ }
+};
+
+
+template<class T>
+struct ChiSquareDistance
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the chi-square distance
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ ResultType sum, diff;
+ Iterator1 last = a + size;
+
+ while (a < last) {
+ sum = (ResultType)(*a + *b);
+ if (sum>0) {
+ diff = (ResultType)(*a - *b);
+ result += diff*diff/sum;
+ }
+ ++a;
+ ++b;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ ResultType result = ResultType();
+ ResultType sum, diff;
+
+ sum = (ResultType)(a+b);
+ if (sum>0) {
+ diff = (ResultType)(a-b);
+ result = diff*diff/sum;
+ }
+ return result;
+ }
+};
+
+
+template<class T>
+struct KL_Divergence
+{
+ typedef True is_kdtree_distance;
+ typedef True is_vector_space_distance;
+
+ typedef T ElementType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ /**
+ * Compute the Kullback–Leibler divergence
+ */
+ template <typename Iterator1, typename Iterator2>
+ ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
+ {
+ ResultType result = ResultType();
+ Iterator1 last = a + size;
+
+ while (a < last) {
+ if (* b != 0) {
+ ResultType ratio = (ResultType)(*a / *b);
+ if (ratio>0) {
+ result += *a * log(ratio);
+ }
+ }
+ ++a;
+ ++b;
+
+ if ((worst_dist>0)&&(result>worst_dist)) {
+ return result;
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Partial distance, used by the kd-tree.
+ */
+ template <typename U, typename V>
+ inline ResultType accum_dist(const U& a, const V& b, int) const
+ {
+ ResultType result = ResultType();
+ if( *b != 0 ) {
+ ResultType ratio = (ResultType)(a / b);
+ if (ratio>0) {
+ result = a * log(ratio);
+ }
+ }
+ return result;
+ }
+};
+
+
+
+/*
+ * This is a "zero iterator". It basically behaves like a zero filled
+ * array to all algorithms that use arrays as iterators (STL style).
+ * It's useful when there's a need to compute the distance between feature
+ * and origin it and allows for better compiler optimisation than using a
+ * zero-filled array.
+ */
+template <typename T>
+struct ZeroIterator
+{
+
+ T operator*()
+ {
+ return 0;
+ }
+
+ T operator[](int)
+ {
+ return 0;
+ }
+
+ const ZeroIterator<T>& operator ++()
+ {
+ return *this;
+ }
+
+ ZeroIterator<T> operator ++(int)
+ {
+ return *this;
+ }
+
+ ZeroIterator<T>& operator+=(int)
+ {
+ return *this;
+ }
+
+};
+
+
+/*
+ * Depending on processed distances, some of them are already squared (e.g. L2)
+ * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
+ * we are working on ^2 distances, thus following templates to ensure that.
+ */
+template <typename Distance, typename ElementType>
+struct squareDistance
+{
+ typedef typename Distance::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist*dist; }
+};
+
+
+template <typename ElementType>
+struct squareDistance<L2_Simple<ElementType>, ElementType>
+{
+ typedef typename L2_Simple<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<L2<ElementType>, ElementType>
+{
+ typedef typename L2<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename ElementType>
+struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
+{
+ typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<HellingerDistance<ElementType>, ElementType>
+{
+ typedef typename HellingerDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+template <typename ElementType>
+struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
+{
+ typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename Distance>
+typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
+{
+ typedef typename Distance::ElementType ElementType;
+
+ squareDistance<Distance, ElementType> dummy;
+ return dummy( dist );
+}
+
+
+/*
+ * ...and a template to ensure the user that he will process the normal distance,
+ * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance)
+ * that will result in doing actually sqrt(dist*dist) for L1 distance for instance.
+ */
+template <typename Distance, typename ElementType>
+struct simpleDistance
+{
+ typedef typename Distance::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return dist; }
+};
+
+
+template <typename ElementType>
+struct simpleDistance<L2_Simple<ElementType>, ElementType>
+{
+ typedef typename L2_Simple<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<L2<ElementType>, ElementType>
+{
+ typedef typename L2<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+
+template <typename ElementType>
+struct simpleDistance<MinkowskiDistance<ElementType>, ElementType>
+{
+ typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<HellingerDistance<ElementType>, ElementType>
+{
+ typedef typename HellingerDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+template <typename ElementType>
+struct simpleDistance<ChiSquareDistance<ElementType>, ElementType>
+{
+ typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
+ ResultType operator()( ResultType dist ) { return sqrt(dist); }
+};
+
+
+template <typename Distance>
+typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist )
+{
+ typedef typename Distance::ElementType ElementType;
+
+ simpleDistance<Distance, ElementType> dummy;
+ return dummy( dist );
+}
+
+}
+
+#endif //OPENCV_FLANN_DIST_H_