diff options
Diffstat (limited to 'thirdparty1/linux/include/opencv2/flann/autotuned_index.h')
-rw-r--r-- | thirdparty1/linux/include/opencv2/flann/autotuned_index.h | 588 |
1 files changed, 588 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/flann/autotuned_index.h b/thirdparty1/linux/include/opencv2/flann/autotuned_index.h new file mode 100644 index 0000000..6ffb929 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/autotuned_index.h @@ -0,0 +1,588 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ +#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_ +#define OPENCV_FLANN_AUTOTUNED_INDEX_H_ + +#include "general.h" +#include "nn_index.h" +#include "ground_truth.h" +#include "index_testing.h" +#include "sampling.h" +#include "kdtree_index.h" +#include "kdtree_single_index.h" +#include "kmeans_index.h" +#include "composite_index.h" +#include "linear_index.h" +#include "logger.h" + +namespace cvflann +{ + +template<typename Distance> +NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance); + + +struct AutotunedIndexParams : public IndexParams +{ + AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1) + { + (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED; + // precision desired (used for autotuning, -1 otherwise) + (*this)["target_precision"] = target_precision; + // build tree time weighting factor + (*this)["build_weight"] = build_weight; + // index memory weighting factor + (*this)["memory_weight"] = memory_weight; + // what fraction of the dataset to use for autotuning + (*this)["sample_fraction"] = sample_fraction; + } +}; + + +template <typename Distance> +class AutotunedIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) : + dataset_(inputData), distance_(d) + { + target_precision_ = get_param(params, "target_precision",0.8f); + build_weight_ = get_param(params,"build_weight", 0.01f); + memory_weight_ = get_param(params, "memory_weight", 0.0f); + sample_fraction_ = get_param(params,"sample_fraction", 0.1f); + bestIndex_ = NULL; + } + + AutotunedIndex(const AutotunedIndex&); + AutotunedIndex& operator=(const AutotunedIndex&); + + virtual ~AutotunedIndex() + { + if (bestIndex_ != NULL) { + delete bestIndex_; + bestIndex_ = NULL; + } + } + + /** + * Method responsible with building the index. + */ + virtual void buildIndex() + { + std::ostringstream stream; + bestParams_ = estimateBuildParams(); + print_params(bestParams_, stream); + Logger::info("----------------------------------------------------\n"); + Logger::info("Autotuned parameters:\n"); + Logger::info("%s", stream.str().c_str()); + Logger::info("----------------------------------------------------\n"); + + bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_); + bestIndex_->buildIndex(); + speedup_ = estimateSearchParams(bestSearchParams_); + stream.str(std::string()); + print_params(bestSearchParams_, stream); + Logger::info("----------------------------------------------------\n"); + Logger::info("Search parameters:\n"); + Logger::info("%s", stream.str().c_str()); + Logger::info("----------------------------------------------------\n"); + } + + /** + * Saves the index to a stream + */ + virtual void saveIndex(FILE* stream) + { + save_value(stream, (int)bestIndex_->getType()); + bestIndex_->saveIndex(stream); + save_value(stream, get_param<int>(bestSearchParams_, "checks")); + } + + /** + * Loads the index from a stream + */ + virtual void loadIndex(FILE* stream) + { + int index_type; + + load_value(stream, index_type); + IndexParams params; + params["algorithm"] = (flann_algorithm_t)index_type; + bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_); + bestIndex_->loadIndex(stream); + int checks; + load_value(stream, checks); + bestSearchParams_["checks"] = checks; + } + + /** + * Method that searches for nearest-neighbors + */ + virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED); + if (checks == FLANN_CHECKS_AUTOTUNED) { + bestIndex_->findNeighbors(result, vec, bestSearchParams_); + } + else { + bestIndex_->findNeighbors(result, vec, searchParams); + } + } + + + IndexParams getParameters() const + { + return bestIndex_->getParameters(); + } + + SearchParams getSearchParameters() const + { + return bestSearchParams_; + } + + float getSpeedup() const + { + return speedup_; + } + + + /** + * Number of features in this index. + */ + virtual size_t size() const + { + return bestIndex_->size(); + } + + /** + * The length of each vector in this index. + */ + virtual size_t veclen() const + { + return bestIndex_->veclen(); + } + + /** + * The amount of memory (in bytes) this index uses. + */ + virtual int usedMemory() const + { + return bestIndex_->usedMemory(); + } + + /** + * Algorithm name + */ + virtual flann_algorithm_t getType() const + { + return FLANN_INDEX_AUTOTUNED; + } + +private: + + struct CostData + { + float searchTimeCost; + float buildTimeCost; + float memoryCost; + float totalCost; + IndexParams params; + }; + + void evaluate_kmeans(CostData& cost) + { + StartStopTimer t; + int checks; + const int nn = 1; + + Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n", + get_param<int>(cost.params,"iterations"), + get_param<int>(cost.params,"branching")); + KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_); + // measure index build time + t.start(); + kmeans.buildIndex(); + t.stop(); + float buildTime = (float)t.value; + + // measure search time + float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); + + float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); + cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory; + cost.searchTimeCost = searchTime; + cost.buildTimeCost = buildTime; + Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_); + } + + + void evaluate_kdtree(CostData& cost) + { + StartStopTimer t; + int checks; + const int nn = 1; + + Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees")); + KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_); + + t.start(); + kdtree.buildIndex(); + t.stop(); + float buildTime = (float)t.value; + + //measure search time + float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); + + float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); + cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory; + cost.searchTimeCost = searchTime; + cost.buildTimeCost = buildTime; + Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime); + } + + + // struct KMeansSimpleDownhillFunctor { + // + // Autotune& autotuner; + // KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {} + // + // float operator()(int* params) { + // + // float maxFloat = numeric_limits<float>::max(); + // + // if (params[0]<2) return maxFloat; + // if (params[1]<0) return maxFloat; + // + // CostData c; + // c.params["algorithm"] = KMEANS; + // c.params["centers-init"] = CENTERS_RANDOM; + // c.params["branching"] = params[0]; + // c.params["max-iterations"] = params[1]; + // + // autotuner.evaluate_kmeans(c); + // + // return c.timeCost; + // + // } + // }; + // + // struct KDTreeSimpleDownhillFunctor { + // + // Autotune& autotuner; + // KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {} + // + // float operator()(int* params) { + // float maxFloat = numeric_limits<float>::max(); + // + // if (params[0]<1) return maxFloat; + // + // CostData c; + // c.params["algorithm"] = KDTREE; + // c.params["trees"] = params[0]; + // + // autotuner.evaluate_kdtree(c); + // + // return c.timeCost; + // + // } + // }; + + + + void optimizeKMeans(std::vector<CostData>& costs) + { + Logger::info("KMEANS, Step 1: Exploring parameter space\n"); + + // explore kmeans parameters space using combinations of the parameters below + int maxIterations[] = { 1, 5, 10, 15 }; + int branchingFactors[] = { 16, 32, 64, 128, 256 }; + + int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors); + costs.reserve(costs.size() + kmeansParamSpaceSize); + + // evaluate kmeans for all parameter combinations + for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) { + for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) { + CostData cost; + cost.params["algorithm"] = FLANN_INDEX_KMEANS; + cost.params["centers_init"] = FLANN_CENTERS_RANDOM; + cost.params["iterations"] = maxIterations[i]; + cost.params["branching"] = branchingFactors[j]; + + evaluate_kmeans(cost); + costs.push_back(cost); + } + } + + // Logger::info("KMEANS, Step 2: simplex-downhill optimization\n"); + // + // const int n = 2; + // // choose initial simplex points as the best parameters so far + // int kmeansNMPoints[n*(n+1)]; + // float kmeansVals[n+1]; + // for (int i=0;i<n+1;++i) { + // kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"]; + // kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"]; + // kmeansVals[i] = kmeansCosts[i].timeCost; + // } + // KMeansSimpleDownhillFunctor kmeans_cost_func(*this); + // // run optimization + // optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals); + // // store results + // for (int i=0;i<n+1;++i) { + // kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2]; + // kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1]; + // kmeansCosts[i].timeCost = kmeansVals[i]; + // } + } + + + void optimizeKDTree(std::vector<CostData>& costs) + { + Logger::info("KD-TREE, Step 1: Exploring parameter space\n"); + + // explore kd-tree parameters space using the parameters below + int testTrees[] = { 1, 4, 8, 16, 32 }; + + // evaluate kdtree for all parameter combinations + for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) { + CostData cost; + cost.params["algorithm"] = FLANN_INDEX_KDTREE; + cost.params["trees"] = testTrees[i]; + + evaluate_kdtree(cost); + costs.push_back(cost); + } + + // Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n"); + // + // const int n = 1; + // // choose initial simplex points as the best parameters so far + // int kdtreeNMPoints[n*(n+1)]; + // float kdtreeVals[n+1]; + // for (int i=0;i<n+1;++i) { + // kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"]; + // kdtreeVals[i] = kdtreeCosts[i].timeCost; + // } + // KDTreeSimpleDownhillFunctor kdtree_cost_func(*this); + // // run optimization + // optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals); + // // store results + // for (int i=0;i<n+1;++i) { + // kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i]; + // kdtreeCosts[i].timeCost = kdtreeVals[i]; + // } + } + + /** + * Chooses the best nearest-neighbor algorithm and estimates the optimal + * parameters to use when building the index (for a given precision). + * Returns a dictionary with the optimal parameters. + */ + IndexParams estimateBuildParams() + { + std::vector<CostData> costs; + + int sampleSize = int(sample_fraction_ * dataset_.rows); + int testSampleSize = std::min(sampleSize / 10, 1000); + + Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_); + + // For a very small dataset, it makes no sense to build any fancy index, just + // use linear search + if (testSampleSize < 10) { + Logger::info("Choosing linear, dataset too small\n"); + return LinearIndexParams(); + } + + // We use a fraction of the original dataset to speedup the autotune algorithm + sampledDataset_ = random_sample(dataset_, sampleSize); + // We use a cross-validation approach, first we sample a testset from the dataset + testDataset_ = random_sample(sampledDataset_, testSampleSize, true); + + // We compute the ground truth using linear search + Logger::info("Computing ground truth... \n"); + gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1); + StartStopTimer t; + t.start(); + compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_); + t.stop(); + + CostData linear_cost; + linear_cost.searchTimeCost = (float)t.value; + linear_cost.buildTimeCost = 0; + linear_cost.memoryCost = 0; + linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR; + + costs.push_back(linear_cost); + + // Start parameter autotune process + Logger::info("Autotuning parameters...\n"); + + optimizeKMeans(costs); + optimizeKDTree(costs); + + float bestTimeCost = costs[0].searchTimeCost; + for (size_t i = 0; i < costs.size(); ++i) { + float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost; + if (timeCost < bestTimeCost) { + bestTimeCost = timeCost; + } + } + + float bestCost = costs[0].searchTimeCost / bestTimeCost; + IndexParams bestParams = costs[0].params; + if (bestTimeCost > 0) { + for (size_t i = 0; i < costs.size(); ++i) { + float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost + + memory_weight_ * costs[i].memoryCost; + if (crtCost < bestCost) { + bestCost = crtCost; + bestParams = costs[i].params; + } + } + } + + delete[] gt_matches_.data; + delete[] testDataset_.data; + delete[] sampledDataset_.data; + + return bestParams; + } + + + + /** + * Estimates the search time parameters needed to get the desired precision. + * Precondition: the index is built + * Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search. + */ + float estimateSearchParams(SearchParams& searchParams) + { + const int nn = 1; + const size_t SAMPLE_COUNT = 1000; + + assert(bestIndex_ != NULL); // must have a valid index + + float speedup = 0; + + int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT); + if (samples > 0) { + Matrix<ElementType> testDataset = random_sample(dataset_, samples); + + Logger::info("Computing ground truth\n"); + + // we need to compute the ground truth first + Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1); + StartStopTimer t; + t.start(); + compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_); + t.stop(); + float linear = (float)t.value; + + int checks; + Logger::info("Estimating number of checks\n"); + + float searchTime; + float cb_index; + if (bestIndex_->getType() == FLANN_INDEX_KMEANS) { + Logger::info("KMeans algorithm, estimating cluster border factor\n"); + KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_; + float bestSearchTime = -1; + float best_cb_index = -1; + int best_checks = -1; + for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) { + kmeans->set_cb_index(cb_index); + searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); + if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) { + bestSearchTime = searchTime; + best_cb_index = cb_index; + best_checks = checks; + } + } + searchTime = bestSearchTime; + cb_index = best_cb_index; + checks = best_checks; + + kmeans->set_cb_index(best_cb_index); + Logger::info("Optimum cb_index: %g\n", cb_index); + bestParams_["cb_index"] = cb_index; + } + else { + searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); + } + + Logger::info("Required number of checks: %d \n", checks); + searchParams["checks"] = checks; + + speedup = linear / searchTime; + + delete[] gt_matches.data; + delete[] testDataset.data; + } + + return speedup; + } + +private: + NNIndex<Distance>* bestIndex_; + + IndexParams bestParams_; + SearchParams bestSearchParams_; + + Matrix<ElementType> sampledDataset_; + Matrix<ElementType> testDataset_; + Matrix<int> gt_matches_; + + float speedup_; + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset_; + + /** + * Index parameters + */ + float target_precision_; + float build_weight_; + float memory_weight_; + float sample_fraction_; + + Distance distance_; + + +}; +} + +#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */ |