summaryrefslogtreecommitdiff
path: root/thirdparty1/linux/include/opencv2/dnn
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty1/linux/include/opencv2/dnn')
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/all_layers.hpp423
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/blob.hpp341
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp533
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/dict.hpp143
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/dnn.hpp350
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp351
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/layer.hpp148
-rw-r--r--thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp137
8 files changed, 2426 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/dnn/all_layers.hpp b/thirdparty1/linux/include/opencv2/dnn/all_layers.hpp
new file mode 100644
index 0000000..9d26b35
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/all_layers.hpp
@@ -0,0 +1,423 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_ALL_LAYERS_HPP__
+#define __OPENCV_DNN_DNN_ALL_LAYERS_HPP__
+#include <opencv2/dnn.hpp>
+
+namespace cv
+{
+namespace dnn
+{
+//! @addtogroup dnn
+//! @{
+
+/** @defgroup dnnLayerList Partial List of Implemented Layers
+ @{
+ This subsection of dnn module contains information about bult-in layers and their descriptions.
+
+ Classes listed here, in fact, provides C++ API for creating intances of bult-in layers.
+ In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones.
+ You can use both API, but factory API is less convinient for native C++ programming and basically designed for use inside importers (see @ref Importer, @ref createCaffeImporter(), @ref createTorchImporter()).
+
+ Bult-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers.
+ In partuclar, the following layers and Caffe @ref Importer were tested to reproduce <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">Caffe</a> functionality:
+ - Convolution
+ - Deconvolution
+ - Pooling
+ - InnerProduct
+ - TanH, ReLU, Sigmoid, BNLL, Power, AbsVal
+ - Softmax
+ - Reshape, Flatten, Slice, Split
+ - LRN
+ - MVN
+ - Dropout (since it does nothing on forward pass -))
+*/
+
+ //! LSTM recurrent layer
+ class CV_EXPORTS_W LSTMLayer : public Layer
+ {
+ public:
+ /** Creates instance of LSTM layer */
+ static CV_WRAP Ptr<LSTMLayer> create();
+
+ /** Set trained weights for LSTM layer.
+ LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.
+
+ Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state.
+ Than current output and current cell state is computed as follows:
+ @f{eqnarray*}{
+ h_t &= o_t \odot tanh(c_t), \\
+ c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
+ @f}
+ where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.
+
+ Gates are computed as follows:
+ @f{eqnarray*}{
+ i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\
+ f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\
+ o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\
+ g_t &= tanh &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\
+ @f}
+ where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
+ @f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.
+
+ For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$
+ (i.e. @f$W_x@f$ is vertical contacentaion of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$.
+ The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$
+ and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$.
+
+ @param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_h @f$)
+ @param Wx is matrix defining how current input is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_x @f$)
+ @param b is bias vector (i.e. according to abovemtioned notation is @f$ b @f$)
+ */
+ CV_WRAP virtual void setWeights(const Blob &Wh, const Blob &Wx, const Blob &b) = 0;
+
+ /** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape.
+ * @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used,
+ * where `Wh` is parameter from setWeights().
+ */
+ CV_WRAP virtual void setOutShape(const BlobShape &outTailShape = BlobShape::empty()) = 0;
+
+ /** @brief Set @f$ h_{t-1} @f$ value that will be used in next forward() calls.
+ * @details By-default @f$ h_{t-1} @f$ is inited by zeros and updated after each forward() call.
+ */
+ CV_WRAP virtual void setH(const Blob &H) = 0;
+ /** @brief Returns current @f$ h_{t-1} @f$ value (deep copy). */
+ CV_WRAP virtual Blob getH() const = 0;
+
+ /** @brief Set @f$ c_{t-1} @f$ value that will be used in next forward() calls.
+ * @details By-default @f$ c_{t-1} @f$ is inited by zeros and updated after each forward() call.
+ */
+ CV_WRAP virtual void setC(const Blob &C) = 0;
+ /** @brief Returns current @f$ c_{t-1} @f$ value (deep copy). */
+ CV_WRAP virtual Blob getC() const = 0;
+
+ /** @brief Specifies either interpet first dimension of input blob as timestamp dimenion either as sample.
+ *
+ * If flag is set to true then shape of input blob will be interpeted as [`T`, `N`, `[data dims]`] where `T` specifies number of timpestamps, `N` is number of independent streams.
+ * In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times.
+ *
+ * If flag is set to false then shape of input blob will be interpeted as [`N`, `[data dims]`].
+ * In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`].
+ */
+ CV_WRAP virtual void setUseTimstampsDim(bool use = true) = 0;
+
+ /** @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output.
+ * @details Shape of the second output is the same as first output.
+ */
+ CV_WRAP virtual void setProduceCellOutput(bool produce = false) = 0;
+
+ /** In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$).
+ * @param input should contain packed values @f$x_t@f$
+ * @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true).
+ *
+ * If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`],
+ * where `T` specifies number of timpestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]).
+ *
+ * If setUseTimstampsDim() is set to fase then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension.
+ * (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]).
+ */
+ void forward(std::vector<Blob*> &input, std::vector<Blob> &output);
+
+ int inputNameToIndex(String inputName);
+
+ int outputNameToIndex(String outputName);
+ };
+
+ //! Classical recurrent layer
+ class CV_EXPORTS_W RNNLayer : public Layer
+ {
+ public:
+ /** Creates instance of RNNLayer */
+ static CV_WRAP Ptr<RNNLayer> create();
+
+ /** Setups learned weights.
+
+ Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows:
+ @f{eqnarray*}{
+ h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h), \\
+ o_t &= tanh&(W_{ho} h_t + b_o),
+ @f}
+
+ @param Wxh is @f$ W_{xh} @f$ matrix
+ @param bh is @f$ b_{h} @f$ vector
+ @param Whh is @f$ W_{hh} @f$ matrix
+ @param Who is @f$ W_{xo} @f$ matrix
+ @param bo is @f$ b_{o} @f$ vector
+ */
+ CV_WRAP virtual void setWeights(const Blob &Wxh, const Blob &bh, const Blob &Whh, const Blob &Who, const Blob &bo) = 0;
+
+ /** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output.
+ * @details Shape of the second output is the same as first output.
+ */
+ CV_WRAP virtual void setProduceHiddenOutput(bool produce = false) = 0;
+
+ /** Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.
+
+ @param input should contain packed input @f$x_t@f$.
+ @param output should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).
+
+ @p input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.
+
+ @p output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.
+
+ If setProduceHiddenOutput() is set to true then @p output[1] will contain a Blob with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
+ */
+ void forward(std::vector<Blob*> &input, std::vector<Blob> &output);
+ };
+
+ class CV_EXPORTS_W BaseConvolutionLayer : public Layer
+ {
+ public:
+
+ CV_PROP_RW Size kernel, stride, pad, dilation, adjustPad;
+ CV_PROP_RW String padMode;
+ };
+
+ class CV_EXPORTS_W ConvolutionLayer : public BaseConvolutionLayer
+ {
+ public:
+
+ static CV_WRAP Ptr<BaseConvolutionLayer> create(Size kernel = Size(3, 3), Size stride = Size(1, 1), Size pad = Size(0, 0), Size dilation = Size(1, 1));
+ };
+
+ class CV_EXPORTS_W DeconvolutionLayer : public BaseConvolutionLayer
+ {
+ public:
+
+ static CV_WRAP Ptr<BaseConvolutionLayer> create(Size kernel = Size(3, 3), Size stride = Size(1, 1), Size pad = Size(0, 0), Size dilation = Size(1, 1), Size adjustPad = Size());
+ };
+
+ class CV_EXPORTS_W LRNLayer : public Layer
+ {
+ public:
+
+ enum Type
+ {
+ CHANNEL_NRM,
+ SPATIAL_NRM
+ };
+ CV_PROP_RW int type;
+
+ CV_PROP_RW int size;
+ CV_PROP_RW double alpha, beta, bias;
+ CV_PROP_RW bool normBySize;
+
+ static CV_WRAP Ptr<LRNLayer> create(int type = LRNLayer::CHANNEL_NRM, int size = 5,
+ double alpha = 1, double beta = 0.75, double bias = 1,
+ bool normBySize = true);
+ };
+
+ class CV_EXPORTS_W PoolingLayer : public Layer
+ {
+ public:
+
+ enum Type
+ {
+ MAX,
+ AVE,
+ STOCHASTIC
+ };
+
+ CV_PROP_RW int type;
+ CV_PROP_RW Size kernel, stride, pad;
+ CV_PROP_RW bool globalPooling;
+ CV_PROP_RW String padMode;
+
+ static CV_WRAP Ptr<PoolingLayer> create(int type = PoolingLayer::MAX, Size kernel = Size(2, 2),
+ Size stride = Size(1, 1), Size pad = Size(0, 0),
+ const cv::String& padMode = "");
+ static CV_WRAP Ptr<PoolingLayer> createGlobal(int type = PoolingLayer::MAX);
+ };
+
+ class CV_EXPORTS_W SoftmaxLayer : public Layer
+ {
+ public:
+
+ static CV_WRAP Ptr<SoftmaxLayer> create(int axis = 1);
+ };
+
+ class CV_EXPORTS_W InnerProductLayer : public Layer
+ {
+ public:
+ CV_PROP_RW int axis;
+
+ static CV_WRAP Ptr<InnerProductLayer> create(int axis = 1);
+ };
+
+ class CV_EXPORTS_W MVNLayer : public Layer
+ {
+ public:
+ CV_PROP_RW double eps;
+ CV_PROP_RW bool normVariance, acrossChannels;
+
+ static CV_WRAP Ptr<MVNLayer> create(bool normVariance = true, bool acrossChannels = false, double eps = 1e-9);
+ };
+
+ /* Reshaping */
+
+ class CV_EXPORTS_W ReshapeLayer : public Layer
+ {
+ public:
+ CV_PROP_RW BlobShape newShapeDesc;
+ CV_PROP_RW Range newShapeRange;
+
+ static CV_WRAP Ptr<ReshapeLayer> create(const BlobShape &newShape, Range applyingRange = Range::all(),
+ bool enableReordering = false);
+ };
+
+ class CV_EXPORTS_W ConcatLayer : public Layer
+ {
+ public:
+ int axis;
+
+ static CV_WRAP Ptr<ConcatLayer> create(int axis = 1);
+ };
+
+ class CV_EXPORTS_W SplitLayer : public Layer
+ {
+ public:
+ int outputsCount; //!< Number of copies that will be produced (is ignored when negative).
+
+ static CV_WRAP Ptr<SplitLayer> create(int outputsCount = -1);
+ };
+
+ class CV_EXPORTS_W SliceLayer : public Layer
+ {
+ public:
+ CV_PROP_RW int axis;
+ CV_PROP std::vector<int> sliceIndices;
+
+ static CV_WRAP Ptr<SliceLayer> create(int axis);
+ static CV_WRAP Ptr<SliceLayer> create(int axis, const std::vector<int> &sliceIndices);
+ };
+
+ /* Activations */
+
+ class CV_EXPORTS_W ReLULayer : public Layer
+ {
+ public:
+ CV_PROP_RW double negativeSlope;
+
+ static CV_WRAP Ptr<ReLULayer> create(double negativeSlope = 0);
+ };
+
+ class CV_EXPORTS_W ChannelsPReLULayer : public Layer
+ {
+ public:
+ static CV_WRAP Ptr<ChannelsPReLULayer> create();
+ };
+
+ class CV_EXPORTS_W TanHLayer : public Layer
+ {
+ public:
+ static CV_WRAP Ptr<TanHLayer> create();
+ };
+
+ class CV_EXPORTS_W SigmoidLayer : public Layer
+ {
+ public:
+ static CV_WRAP Ptr<SigmoidLayer> create();
+ };
+
+ class CV_EXPORTS_W BNLLLayer : public Layer
+ {
+ public:
+ static CV_WRAP Ptr<BNLLLayer> create();
+ };
+
+ class CV_EXPORTS_W AbsLayer : public Layer
+ {
+ public:
+ static CV_WRAP Ptr<AbsLayer> create();
+ };
+
+ class CV_EXPORTS_W PowerLayer : public Layer
+ {
+ public:
+ CV_PROP_RW double power, scale, shift;
+
+ static CV_WRAP Ptr<PowerLayer> create(double power = 1, double scale = 1, double shift = 0);
+ };
+
+ /* Layers using in semantic segmentation */
+
+ class CV_EXPORTS_W CropLayer : public Layer
+ {
+ public:
+ CV_PROP int startAxis;
+ CV_PROP std::vector<int> offset;
+
+ static Ptr<CropLayer> create(int start_axis, const std::vector<int> &offset);
+ };
+
+ class CV_EXPORTS_W EltwiseLayer : public Layer
+ {
+ public:
+ enum EltwiseOp
+ {
+ PROD = 0,
+ SUM = 1,
+ MAX = 2,
+ };
+
+ static Ptr<EltwiseLayer> create(EltwiseOp op, const std::vector<int> &coeffs);
+ };
+
+ class CV_EXPORTS_W BatchNormLayer : public Layer
+ {
+ public:
+ static CV_WRAP Ptr<BatchNormLayer> create(float eps, bool has_weights, bool has_bias);
+ };
+
+ class CV_EXPORTS_W MaxUnpoolLayer : public Layer
+ {
+ public:
+ static CV_WRAP Ptr<MaxUnpoolLayer> create(Size unpoolSize);
+ };
+
+//! @}
+//! @}
+
+}
+}
+#endif
diff --git a/thirdparty1/linux/include/opencv2/dnn/blob.hpp b/thirdparty1/linux/include/opencv2/dnn/blob.hpp
new file mode 100644
index 0000000..71e929d
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/blob.hpp
@@ -0,0 +1,341 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_BLOB_HPP__
+#define __OPENCV_DNN_DNN_BLOB_HPP__
+#include <opencv2/core.hpp>
+#include <vector>
+#include <ostream>
+#include <iostream>
+
+namespace cv
+{
+namespace dnn
+{
+//! @addtogroup dnn
+//! @{
+
+ /** @brief Lightweight class for storing and processing a shape of blob (or anything else). */
+ struct CV_EXPORTS_W BlobShape
+ {
+ BlobShape(); //!< Creates [1, 1, 1, 1] shape @todo Make more clearer behavior.
+ explicit BlobShape(int s0); //!< Creates 1-dim shape [@p s0]
+ BlobShape(int s0, int s1); //!< @overload
+ BlobShape(int s0, int s1, int s2); //!< @overload
+ BlobShape(int num, int cn, int rows, int cols); //!< Creates 4-dim shape [@p num, @p cn, @p rows, @p cols]
+
+ //! Creates n-dim shape from the @p sizes array; if @p sizes is NULL then shape will contain unspecified data
+ BlobShape(int ndims, const int *sizes);
+ BlobShape(const std::vector<int> &sizes); //!< Creates n-dim shape from the @p sizes vector
+ template<int n>
+ BlobShape(const Vec<int, n> &shape); //!< Creates n-dim shape from @ref cv::Vec
+
+ //! Creates n-dim shape and fill its by @p fill
+ static BlobShape all(int ndims, int fill = 1);
+
+ /** @brief Returns number of dimensions. */
+ int dims() const;
+
+ /** @brief Returns reference to the size of the specified @p axis.
+ *
+ * Negative @p axis is supported, in this case a counting starts from the last axis,
+ * i. e. -1 corresponds to last axis.
+ * If non-existing axis was passed then an error will be generated.
+ */
+ int &size(int axis);
+
+ /** @brief Returns the size of the specified @p axis.
+ * @see size()
+ */
+ int size(int axis) const;
+
+ int operator[](int axis) const; //!< Does the same thing as size(axis).
+ int &operator[](int axis); //!< Does the same thing as size(int) const.
+
+ /** @brief Returns the size of the specified @p axis.
+ *
+ * Does the same thing as size(int) const, but if non-existing axis will be passed then 1 will be returned,
+ * therefore this function always finishes successfully.
+ */
+ int xsize(int axis) const;
+
+ /** @brief Converts @p axis index to canonical format (where 0 <= @p axis < dims()). */
+ int canonicalAxis(int axis) const;
+
+ /** @brief Returns the product of all sizes of axes. */
+ ptrdiff_t total() const;
+
+ /** @brief Computes the product of sizes of axes among the specified axes range [@p startAxis; @p endAxis).
+ * @details Negative axis indexing can be used. @sa Blob::total(int,int)
+ */
+ ptrdiff_t total(int startAxis, int endAxis = INT_MAX) const;
+
+ /** @brief Constructs new shape from axes in range [@p startAxis; @p endAxis).
+ * @details Negative axis indexing can be used. @sa Blob::total(int,int)
+ */
+ BlobShape slice(int startAxis, int endAxis = INT_MAX) const;
+
+ /** @brief Returns pointer to the first element of continuous size array. */
+ const int *ptr() const;
+ /** @overload */
+ int *ptr();
+
+ bool equal(const BlobShape &other) const; //!< Checks equality of two shapes.
+ bool operator== (const BlobShape &r) const; //!< @sa equal()
+
+ BlobShape operator+ (const BlobShape &r) const; //!< Contacenates two shapes.
+
+ static BlobShape like(const Mat &m); //!< Returns shape of passed Mat.
+ static BlobShape like(const UMat &m); //!< Returns shape of passed UMat.
+
+ static BlobShape empty(); //!< Returns empty shape [].
+ bool isEmpty() const; //!< Returns true if shape is empty (i.e []).
+
+#ifdef CV_CXX_MOVE_SEMANTICS
+ //TBD
+#endif
+
+ private:
+ cv::AutoBuffer<int,4> sz;
+ };
+
+
+ /** @brief This class provides methods for continuous n-dimensional CPU and GPU array processing.
+ *
+ * The class is realized as a wrapper over @ref cv::Mat and @ref cv::UMat.
+ * It will support methods for switching and logical synchronization between CPU and GPU.
+ */
+ class CV_EXPORTS_W Blob
+ {
+ public:
+ Blob();
+
+ /** @brief Constructs blob with specified @p shape and @p type. */
+ explicit Blob(const BlobShape &shape, int type = CV_32F, int allocFlags = ALLOC_MAT);
+
+ /** @brief Constructs Blob from existing Mat or UMat. */
+ Blob(InputArray data);
+
+ /** @brief Constructs 4-dimensional blob (so-called batch) from image or array of images.
+ * @param image 2-dimensional multi-channel or 3-dimensional single-channel image (or array of such images)
+ * @param dstCn specifies size of second axis of ouptut blob
+ */
+ static Blob fromImages(InputArray image, int dstCn = -1);
+
+ /** @brief Works like Blob::fromImages() but in-place. */
+ void batchFromImages(InputArray image, int dstCn = -1);
+
+ /** @brief Creates blob with specified @p shape and @p type. */
+ void create(const BlobShape &shape, int type = CV_32F, int allocFlags = ALLOC_MAT);
+
+ /** @brief Creates blob from Mat or UMat without copying the data.
+ * @details If in is Mat then Mat data is populated, otherwise - UMat.
+ */
+ void fill(InputArray in);
+
+ /** @brief Creates blob from user data.
+ * @details If @p deepCopy is false then CPU data will not be allocated.
+ */
+ void fill(const BlobShape &shape, int type, void *data, bool deepCopy = true);
+
+ /** @brief Sets @p value to the last used data (if @p allocFlags = -1).
+ * @details If @p allocFlags != -1 then destination data (Mat or UMat) is determined by flags from AllocFlag enum like in create().
+ */
+ void setTo(InputArray value, int allocFlags = -1);
+
+ Mat& matRef(bool writeOnly = true); //!< Returns reference to cv::Mat, containing blob data.
+ const Mat& matRefConst() const; //!< Returns reference to cv::Mat, containing blob data, for read-only purposes.
+ UMat &umatRef(bool writeOnly = true); //!< Returns reference to cv::UMat, containing blob data.
+ const UMat &umatRefConst() const; //!< Returns reference to cv::UMat, containing blob data, for read-only purposes.
+
+ template<typename XMat>
+ XMat &getRef(bool writeOnly = true);
+ template<typename XMat>
+ const XMat &getRefConst() const;
+
+ void updateMat(bool syncData = true) const; //!< Actualizes data stored inside Mat of Blob; if @p syncData is false then only shape will be actualized.
+ void updateUMat(bool syncData = true) const; //!< Actualizes data stored inside Mat of Blob; if @p syncData is false then only shape will be actualized.
+ void sync() const; //!< Updates Mat and UMat of Blob.
+
+ /** @brief Returns number of blob dimensions. */
+ int dims() const;
+
+ /** @brief Returns the size of the specified @p axis.
+ *
+ * Negative @p axis is supported, in this case a counting starts from the last axis,
+ * i. e. -1 corresponds to last axis.
+ * If non-existing axis was passed then an error will be generated.
+ */
+ int size(int axis) const;
+
+ /** @brief Returns the size of the specified @p axis.
+ *
+ * Does the same thing as size(int) const, but if non-existing axis will be passed then 1 will be returned,
+ * therefore this function always finishes successfully.
+ */
+ int xsize(int axis) const;
+
+ /** @brief Computes the product of sizes of axes among the specified axes range [@p startAxis; @p endAxis).
+ * @param startAxis the first axis to include in the range.
+ * @param endAxis the first axis to exclude from the range.
+ * @details Negative axis indexing can be used.
+ */
+ size_t total(int startAxis = 0, int endAxis = INT_MAX) const;
+
+ /** @brief Converts @p axis index to canonical format (where 0 <= @p axis < dims()). */
+ int canonicalAxis(int axis) const;
+
+ /** @brief Returns shape of the blob. */
+ BlobShape shape() const;
+
+ /** @brief Checks equality of two blobs shapes. */
+ bool equalShape(const Blob &other) const;
+
+ /** @brief Returns slice of first two dimensions.
+ * @details The behaviour is similar to the following numpy code: blob[n, cn, ...]
+ */
+ Mat getPlane(int n, int cn);
+
+ /** @brief Returns slice of first dimension.
+ * @details The behaviour is similar to getPlane(), but returns all
+ * channels * rows * cols values, corresponding to the n-th value
+ * of the first dimension.
+ */
+ Mat getPlanes(int n);
+
+ /* Shape getters of 4-dimensional blobs. */
+ int cols() const; //!< Returns size of the fourth axis blob.
+ int rows() const; //!< Returns size of the thrid axis blob.
+ int channels() const; //!< Returns size of the second axis blob.
+ int num() const; //!< Returns size of the first axis blob.
+ Size size2() const; //!< Returns cv::Size(cols(), rows())
+ Vec4i shape4() const; //!< Returns shape of first four blob axes.
+
+ /** @brief Returns linear index of the element with specified coordinates in the blob.
+ *
+ * If @p n < dims() then unspecified coordinates will be filled by zeros.
+ * If @p n > dims() then extra coordinates will be ignored.
+ */
+ template<int n>
+ size_t offset(const Vec<int, n> &pos) const;
+ /** @overload */
+ size_t offset(int n = 0, int cn = 0, int row = 0, int col = 0) const;
+
+ /* CPU pointer getters */
+ /** @brief Returns pointer to the blob element with the specified position, stored in CPU memory.
+ *
+ * @p n correspond to the first axis, @p cn - to the second, etc.
+ * If dims() > 4 then unspecified coordinates will be filled by zeros.
+ * If dims() < 4 then extra coordinates will be ignored.
+ */
+ uchar *ptr(int n = 0, int cn = 0, int row = 0, int col = 0);
+ /** @overload */
+ template<typename Type>
+ Type *ptr(int n = 0, int cn = 0, int row = 0, int col = 0);
+ /** @overload ptr<float>() */
+ float *ptrf(int n = 0, int cn = 0, int row = 0, int col = 0);
+ //TODO: add const ptr methods
+
+ /** @brief Shares data from other @p blob.
+ * @returns *this
+ */
+ Blob &shareFrom(const Blob &blob);
+
+ /** @brief Changes shape of the blob without copying the data.
+ * @returns *this
+ */
+ Blob &reshape(const BlobShape &shape);
+
+ /** @brief Changes shape of the blob without copying the data.
+ * @returns shallow copy of original blob with new shape.
+ */
+ Blob reshaped(const BlobShape &newShape) const;
+
+ int type() const; //!< Returns type of the blob.
+ int elemSize() const; //!< Returns size of single element in bytes.
+ int getState() const; //!< Returns current state of the blob, @see DataState.
+
+ private:
+ const int *sizes() const;
+
+# define CV_DNN_UMAT //DBG
+#ifdef HAVE_OPENCL
+# define CV_DNN_UMAT
+#endif
+
+#ifdef CV_DNN_UMAT
+# define CV_DNN_UMAT_ONLY(expr) (expr)
+#else
+# define CV_DNN_UMAT_ONLY(expr)
+#endif
+
+#ifndef CV_DNN_UMAT
+ Mat m;
+#else
+ mutable Mat m;
+ mutable UMat um;
+ mutable uchar state;
+#endif
+
+public:
+ enum DataState
+ {
+ UNINITIALIZED = 0,
+ HEAD_AT_MAT = 1 << 0,
+ HEAD_AT_UMAT = 1 << 1,
+ SYNCED = HEAD_AT_MAT | HEAD_AT_UMAT
+ };
+
+ enum AllocFlag
+ {
+ ALLOC_MAT = HEAD_AT_MAT,
+ ALLOC_UMAT = HEAD_AT_UMAT,
+ ALLOC_BOTH = SYNCED
+ };
+ };
+
+//! @}
+}
+}
+
+#include "blob.inl.hpp"
+
+#endif
diff --git a/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp b/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp
new file mode 100644
index 0000000..b7f741e
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp
@@ -0,0 +1,533 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_BLOB_INL_HPP__
+#define __OPENCV_DNN_DNN_BLOB_INL_HPP__
+#include "blob.hpp"
+
+namespace cv
+{
+namespace dnn
+{
+
+inline BlobShape::BlobShape()
+{
+ sz.allocate(4);
+ for (size_t i = 0; i < sz.size(); i++)
+ sz[i] = 1;
+}
+
+inline BlobShape BlobShape::all(int ndims, int fill)
+{
+ CV_Assert(ndims >= 0);
+ BlobShape res;
+ res.sz.allocate(ndims);
+ for (int i = 0; i < ndims; i++)
+ res.sz[i] = fill;
+ return res;
+}
+
+inline BlobShape::BlobShape(int ndims, const int *sizes) : sz( (size_t)std::max(ndims, 0) )
+{
+ CV_Assert(ndims >= 0);
+ if (!sizes)
+ return;
+ for (int i = 0; i < ndims; i++)
+ sz[i] = sizes[i];
+}
+
+inline BlobShape::BlobShape(int s0) : sz(1)
+{
+ sz[0] = s0;
+}
+
+inline BlobShape::BlobShape(int s0, int s1) : sz(2)
+{
+ sz[0] = s0;
+ sz[1] = s1;
+}
+
+inline BlobShape::BlobShape(int s0, int s1, int s2) : sz(3)
+{
+ sz[0] = s0;
+ sz[1] = s1;
+ sz[2] = s2;
+}
+
+inline BlobShape::BlobShape(int num, int cn, int rows, int cols) : sz(4)
+{
+ sz[0] = num;
+ sz[1] = cn;
+ sz[2] = rows;
+ sz[3] = cols;
+}
+
+inline BlobShape::BlobShape(const std::vector<int> &sizes) : sz( sizes.size() )
+{
+ for (int i = 0; i < (int)sizes.size(); i++)
+ sz[i] = sizes[i];
+}
+
+template<int n>
+inline BlobShape::BlobShape(const Vec<int, n> &shape) : sz(n)
+{
+ for (int i = 0; i < n; i++)
+ sz[i] = shape[i];
+}
+
+inline int BlobShape::dims() const
+{
+ return (int)sz.size();
+}
+
+inline int BlobShape::xsize(int axis) const
+{
+ if (axis < -dims() || axis >= dims())
+ return 1;
+
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int BlobShape::size(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int &BlobShape::size(int axis)
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int BlobShape::operator[] (int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int &BlobShape::operator[] (int axis)
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sz[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int BlobShape::canonicalAxis(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return (axis < 0) ? axis + dims() : axis;
+}
+
+inline ptrdiff_t BlobShape::total() const
+{
+ if (dims() == 0)
+ return 0;
+
+ ptrdiff_t res = 1;
+ for (int i = 0; i < dims(); i++)
+ res *= sz[i];
+ return res;
+}
+
+inline ptrdiff_t BlobShape::total(int startAxis, int endAxis) const
+{
+ if (isEmpty())
+ return 0;
+
+ if (endAxis == INT_MAX)
+ endAxis = dims();
+ else if (endAxis < 0)
+ endAxis += dims();
+ startAxis = (startAxis < 0) ? startAxis + dims() : startAxis;
+ CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims());
+
+ ptrdiff_t res = 1;
+ for (int i = startAxis; i < endAxis; i++)
+ res *= sz[i];
+ return res;
+}
+
+inline BlobShape BlobShape::slice(int startAxis, int endAxis) const
+{
+ if (isEmpty())
+ return BlobShape::empty();
+
+ if (endAxis == INT_MAX)
+ endAxis = dims();
+ else if (endAxis < 0)
+ endAxis += dims();
+ startAxis = (startAxis < 0) ? startAxis + dims() : startAxis;
+ CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims());
+
+ BlobShape res(endAxis - startAxis, (const int*)NULL);
+ for (int i = startAxis; i < endAxis; i++)
+ res[i - startAxis] = sz[i];
+ return res;
+}
+
+inline const int *BlobShape::ptr() const
+{
+ return sz;
+}
+
+inline int *BlobShape::ptr()
+{
+ return sz;
+}
+
+inline bool BlobShape::equal(const BlobShape &other) const
+{
+ if (this->dims() != other.dims())
+ return false;
+
+ for (int i = 0; i < other.dims(); i++)
+ {
+ if (sz[i] != other.sz[i])
+ return false;
+ }
+
+ return true;
+}
+
+inline bool BlobShape::operator==(const BlobShape &r) const
+{
+ return this->equal(r);
+}
+
+inline BlobShape BlobShape::like(const Mat &m)
+{
+ return BlobShape(m.dims, (const int*)m.size);
+}
+
+inline BlobShape BlobShape::like(const UMat &m)
+{
+ return BlobShape(m.dims, (const int*)m.size);
+}
+
+inline BlobShape BlobShape::empty()
+{
+ return BlobShape(0, (const int*)NULL);
+}
+
+inline bool BlobShape::isEmpty() const
+{
+ return dims() == 0;
+}
+
+inline BlobShape BlobShape::operator+(const BlobShape &r) const
+{
+ BlobShape newShape(this->dims() + r.dims(), (int*)NULL);
+ for (int i = 0; i < this->dims(); i++)
+ newShape[i] = (*this)[i];
+ for (int i = 0; i < r.dims(); i++)
+ newShape[this->dims() + i] = r[i];
+ return newShape;
+}
+
+CV_EXPORTS std::ostream &operator<< (std::ostream &stream, const BlobShape &shape);
+
+/////////////////////////////////////////////////////////////////////
+
+#ifndef CV_DNN_UMAT
+# define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) (cpu_expr)
+#else
+# define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) ((state == HEAD_AT_UMAT) ? (gpu_expr) : (cpu_expr))
+#endif
+
+
+inline int Blob::dims() const
+{
+ return CV_DNN_SWITCH_MU(m.dims, um.dims);
+}
+
+inline const int * Blob::sizes() const
+{
+ return CV_DNN_SWITCH_MU((const int*)m.size, (const int*)um.size);
+}
+
+inline int Blob::type() const
+{
+ return CV_DNN_SWITCH_MU(m.type(), um.type());
+}
+
+template<int n>
+inline size_t Blob::offset(const Vec<int, n> &pos) const
+{
+ const MatStep &step = CV_DNN_SWITCH_MU(m.step, um.step);
+ size_t ofs = 0;
+ int i;
+ for (i = 0; i < std::min(n, dims()); i++)
+ {
+ CV_DbgAssert(pos[i] >= 0 && pos[i] < size(i));
+ ofs += step[i] * pos[i];
+ }
+ for (; i < dims(); i++)
+ CV_DbgAssert(pos[i] == 0);
+ CV_DbgAssert(ofs % elemSize() == 0);
+ return ofs / elemSize();
+}
+
+inline int Blob::canonicalAxis(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return (axis < 0) ? axis + dims() : axis;
+}
+
+inline int Blob::xsize(int axis) const
+{
+ if (axis < -dims() || axis >= dims())
+ return 1;
+
+ return sizes()[(axis < 0) ? axis + dims() : axis];
+}
+
+inline int Blob::size(int axis) const
+{
+ CV_Assert(-dims() <= axis && axis < dims());
+ return sizes()[(axis < 0) ? axis + dims() : axis];
+}
+
+inline size_t Blob::total(int startAxis, int endAxis) const
+{
+ if (startAxis < 0)
+ startAxis += dims();
+
+ if (endAxis == INT_MAX)
+ endAxis = dims();
+ else if (endAxis < 0)
+ endAxis += dims();
+
+ CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims());
+
+ size_t cnt = 1; //fix: assume that slice isn't empty
+ for (int i = startAxis; i < endAxis; i++)
+ cnt *= (size_t)sizes()[i];
+
+ return cnt;
+}
+
+inline size_t Blob::offset(int n, int cn, int row, int col) const
+{
+ return offset(Vec4i(n, cn, row, col));
+}
+
+inline float *Blob::ptrf(int n, int cn, int row, int col)
+{
+ return matRef(false).ptr<float>() + offset(n, cn, row, col);
+}
+
+inline uchar *Blob::ptr(int n, int cn, int row, int col)
+{
+ Mat &mat = matRef(false);
+ return mat.ptr() + mat.elemSize() * offset(n, cn, row, col);
+}
+
+template<typename Dtype>
+inline Dtype* Blob::ptr(int n, int cn, int row, int col)
+{
+ CV_Assert(type() == cv::DataDepth<Dtype>::value);
+ return (Dtype*) ptr(n, cn, row, col);
+}
+
+inline BlobShape Blob::shape() const
+{
+ return BlobShape(dims(), sizes());
+}
+
+inline bool Blob::equalShape(const Blob &other) const
+{
+ if (this->dims() != other.dims())
+ return false;
+
+ for (int i = 0; i < dims(); i++)
+ {
+ if (this->sizes()[i] != other.sizes()[i])
+ return false;
+ }
+ return true;
+}
+
+inline Mat& Blob::matRef(bool writeOnly)
+{
+#ifdef CV_DNN_UMAT
+ updateMat(!writeOnly);
+ state = HEAD_AT_MAT;
+#else
+ (void)writeOnly;
+#endif
+ return m;
+}
+
+inline const Mat& Blob::matRefConst() const
+{
+ CV_DNN_UMAT_ONLY( updateMat() );
+ return m;
+}
+
+inline UMat &Blob::umatRef(bool writeOnly)
+{
+#ifndef CV_DNN_UMAT
+ CV_Error(Error::GpuNotSupported, "");
+ (void)writeOnly;
+ return *(new UMat());
+#else
+ updateUMat(!writeOnly);
+ state = HEAD_AT_UMAT;
+ return um;
+#endif
+}
+
+inline const UMat &Blob::umatRefConst() const
+{
+#ifndef CV_DNN_UMAT
+ CV_Error(Error::GpuNotSupported, "");
+ return *(new UMat());
+#else
+ updateUMat();
+ return um;
+#endif
+}
+
+template<>
+inline Mat &Blob::getRef<Mat>(bool writeOnly)
+{
+ return matRef(writeOnly);
+}
+
+template<>
+inline UMat &Blob::getRef<UMat>(bool writeOnly)
+{
+ return umatRef(writeOnly);
+}
+
+template<>
+inline const Mat &Blob::getRefConst<Mat>() const
+{
+ return matRefConst();
+}
+
+template<>
+inline const UMat &Blob::getRefConst<UMat>() const
+{
+ return umatRefConst();
+}
+
+inline Mat Blob::getPlane(int n, int cn)
+{
+ CV_Assert(dims() > 2);
+ return Mat(dims() - 2, sizes() + 2, type(), ptr(n, cn));
+}
+
+inline Mat Blob::getPlanes(int n)
+{
+ CV_Assert(dims() > 3);
+ return Mat(dims() - 1, sizes() + 1, type(), ptr(n));
+}
+
+inline int Blob::cols() const
+{
+ return xsize(3);
+}
+
+inline int Blob::rows() const
+{
+ return xsize(2);
+}
+
+inline int Blob::channels() const
+{
+ return xsize(1);
+}
+
+inline int Blob::num() const
+{
+ return xsize(0);
+}
+
+inline Size Blob::size2() const
+{
+ return Size(cols(), rows());
+}
+
+inline Blob &Blob::shareFrom(const Blob &blob)
+{
+ this->m = blob.m;
+#ifdef CV_DNN_UMAT
+ this->um = blob.um;
+ this->state = blob.state;
+#endif
+ return *this;
+}
+
+inline Blob &Blob::reshape(const BlobShape &newShape)
+{
+ if (!m.empty()) m = m.reshape(1, newShape.dims(), newShape.ptr());
+#ifdef CV_DNN_UMAT
+ if (!um.empty()) um = um.reshape(1, newShape.dims(), newShape.ptr());
+#endif
+ return *this;
+}
+
+inline Blob Blob::reshaped(const BlobShape &newShape) const
+{
+ Blob res(*this); //also, res.shareFrom(*this) could be used
+ res.reshape(newShape);
+ return res;
+}
+
+inline int Blob::elemSize() const
+{
+ return CV_ELEM_SIZE(type());
+}
+
+inline int Blob::getState() const
+{
+#ifdef CV_DNN_UMAT
+ return this->state;
+#else
+ return m.empty() ? UNINITIALIZED : HEAD_AT_MAT;
+#endif
+}
+
+}
+}
+
+#endif
diff --git a/thirdparty1/linux/include/opencv2/dnn/dict.hpp b/thirdparty1/linux/include/opencv2/dnn/dict.hpp
new file mode 100644
index 0000000..f7cd0f2
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/dict.hpp
@@ -0,0 +1,143 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_DICT_HPP__
+#define __OPENCV_DNN_DNN_DICT_HPP__
+
+#include <opencv2/core.hpp>
+#include <map>
+#include <ostream>
+
+namespace cv
+{
+namespace dnn
+{
+//! @addtogroup dnn
+//! @{
+
+/** @brief This struct stores the scalar value (or array) of one of the following type: double, cv::String or int64.
+ * @todo Maybe int64 is useless because double type exactly stores at least 2^52 integers.
+ */
+struct DictValue
+{
+ DictValue(const DictValue &r);
+ DictValue(int64 i = 0) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = i; } //!< Constructs integer scalar
+ DictValue(int i) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = i; } //!< Constructs integer scalar
+ DictValue(unsigned p) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = p; } //!< Constructs integer scalar
+ DictValue(double p) : type(Param::REAL), pd(new AutoBuffer<double,1>) { (*pd)[0] = p; } //!< Constructs floating point scalar
+ DictValue(const String &s) : type(Param::STRING), ps(new AutoBuffer<String,1>) { (*ps)[0] = s; } //!< Constructs string scalar
+ DictValue(const char *s) : type(Param::STRING), ps(new AutoBuffer<String,1>) { (*ps)[0] = s; } //!< @overload
+
+ template<typename TypeIter>
+ static DictValue arrayInt(TypeIter begin, int size); //!< Constructs integer array
+ template<typename TypeIter>
+ static DictValue arrayReal(TypeIter begin, int size); //!< Constructs floating point array
+ template<typename TypeIter>
+ static DictValue arrayString(TypeIter begin, int size); //!< Constructs array of strings
+
+ template<typename T>
+ T get(int idx = -1) const; //!< Tries to convert array element with specified index to requested type and returns its.
+
+ int size() const;
+
+ bool isInt() const;
+ bool isString() const;
+ bool isReal() const;
+
+ DictValue &operator=(const DictValue &r);
+
+ friend std::ostream &operator<<(std::ostream &stream, const DictValue &dictv);
+
+ ~DictValue();
+
+private:
+
+ int type;
+
+ union
+ {
+ AutoBuffer<int64, 1> *pi;
+ AutoBuffer<double, 1> *pd;
+ AutoBuffer<String, 1> *ps;
+ void *pv;
+ };
+
+ DictValue(int _type, void *_p) : type(_type), pv(_p) {}
+ void release();
+};
+
+/** @brief This class implements name-value dictionary, values are instances of DictValue. */
+class CV_EXPORTS Dict
+{
+ typedef std::map<String, DictValue> _Dict;
+ _Dict dict;
+
+public:
+
+ //! Checks a presence of the @p key in the dictionary.
+ bool has(const String &key) const;
+
+ //! If the @p key in the dictionary then returns pointer to its value, else returns NULL.
+ DictValue *ptr(const String &key);
+
+ //! If the @p key in the dictionary then returns its value, else an error will be generated.
+ const DictValue &get(const String &key) const;
+
+ /** @overload */
+ template <typename T>
+ T get(const String &key) const;
+
+ //! If the @p key in the dictionary then returns its value, else returns @p defaultValue.
+ template <typename T>
+ T get(const String &key, const T &defaultValue) const;
+
+ //! Sets new @p value for the @p key, or adds new key-value pair into the dictionary.
+ template<typename T>
+ const T &set(const String &key, const T &value);
+
+ friend std::ostream &operator<<(std::ostream &stream, const Dict &dict);
+};
+
+//! @}
+}
+}
+
+#endif
diff --git a/thirdparty1/linux/include/opencv2/dnn/dnn.hpp b/thirdparty1/linux/include/opencv2/dnn/dnn.hpp
new file mode 100644
index 0000000..41d975b
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/dnn.hpp
@@ -0,0 +1,350 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_HPP__
+#define __OPENCV_DNN_DNN_HPP__
+
+#include <vector>
+#include <opencv2/core.hpp>
+#include <opencv2/dnn/dict.hpp>
+#include <opencv2/dnn/blob.hpp>
+
+namespace cv
+{
+namespace dnn //! This namespace is used for dnn module functionlaity.
+{
+//! @addtogroup dnn
+//! @{
+
+ /** @brief Initialize dnn module and built-in layers.
+ *
+ * This function automatically called on most of OpenCV builds,
+ * but you need to call it manually on some specific configurations (iOS for example).
+ */
+ CV_EXPORTS_W void initModule();
+
+ /** @brief This class provides all data needed to initialize layer.
+ *
+ * It includes dictionary with scalar params (which can be readed by using Dict interface),
+ * blob params #blobs and optional meta information: #name and #type of layer instance.
+ */
+ class CV_EXPORTS LayerParams : public Dict
+ {
+ public:
+ //TODO: Add ability to name blob params
+ std::vector<Blob> blobs; //!< List of learned parameters stored as blobs.
+
+ String name; //!< Name of the layer instance (optional, can be used internal purposes).
+ String type; //!< Type name which was used for creating layer by layer factory (optional).
+ };
+
+ /** @brief This interface class allows to build new Layers - are building blocks of networks.
+ *
+ * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
+ * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
+ */
+ class CV_EXPORTS_W Layer
+ {
+ public:
+
+ //! List of learned parameters must be stored here to allow read them by using Net::getParam().
+ CV_PROP_RW std::vector<Blob> blobs;
+
+ /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs.
+ * @param[in] input vector of already allocated input blobs
+ * @param[out] output vector of output blobs, which must be allocated
+ *
+ * This method must create each produced blob according to shape of @p input blobs and internal layer params.
+ * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections.
+ * This method can be called multiple times if size of any @p input blob was changed.
+ */
+ virtual void allocate(const std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
+
+ /** @brief Given the @p input blobs, computes the output @p blobs.
+ * @param[in] input the input blobs.
+ * @param[out] output allocated output blobs, which will store results of the computation.
+ */
+ virtual void forward(std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
+
+ /** @brief @overload */
+ CV_WRAP void allocate(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs);
+
+ /** @brief @overload */
+ CV_WRAP std::vector<Blob> allocate(const std::vector<Blob> &inputs);
+
+ /** @brief @overload */
+ CV_WRAP void forward(const std::vector<Blob> &inputs, CV_IN_OUT std::vector<Blob> &outputs);
+
+ /** @brief Allocates layer and computes output. */
+ CV_WRAP void run(const std::vector<Blob> &inputs, CV_OUT std::vector<Blob> &outputs);
+
+ /** @brief Returns index of input blob into the input array.
+ * @param inputName label of input blob
+ *
+ * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
+ * This method maps label of input blob to its index into input vector.
+ */
+ virtual int inputNameToIndex(String inputName);
+ /** @brief Returns index of output blob in output array.
+ * @see inputNameToIndex()
+ */
+ virtual int outputNameToIndex(String outputName);
+
+ CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
+ CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
+
+ Layer();
+ explicit Layer(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
+ void setParamsFrom(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
+ virtual ~Layer();
+ };
+
+ /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
+ *
+ * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
+ * and edges specify relationships between layers inputs and outputs.
+ *
+ * Each network layer has unique integer id and unique string name inside its network.
+ * LayerId can store either layer name or layer id.
+ *
+ * This class supports reference counting of its instances, i. e. copies point to the same instance.
+ */
+ class CV_EXPORTS_W_SIMPLE Net
+ {
+ public:
+
+ CV_WRAP Net(); //!< Default constructor.
+ CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
+
+ /** Returns true if there are no layers in the network. */
+ CV_WRAP bool empty() const;
+
+ /** @brief Adds new layer to the net.
+ * @param name unique name of the adding layer.
+ * @param type typename of the adding layer (type must be registered in LayerRegister).
+ * @param params parameters which will be used to initialize the creating layer.
+ * @returns unique identifier of created layer, or -1 if a failure will happen.
+ */
+ int addLayer(const String &name, const String &type, LayerParams &params);
+ /** @brief Adds new layer and connects its first input to the first output of previously added layer.
+ * @see addLayer()
+ */
+ int addLayerToPrev(const String &name, const String &type, LayerParams &params);
+
+ /** @brief Converts string name of the layer to the integer identifier.
+ * @returns id of the layer, or -1 if the layer wasn't found.
+ */
+ CV_WRAP int getLayerId(const String &layer);
+
+ CV_WRAP std::vector<String> getLayerNames() const;
+
+ /** @brief Container for strings and integers. */
+ typedef DictValue LayerId;
+
+ /** @brief Returns pointer to layer with specified name which the network use. */
+ CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
+
+ /** @brief Delete layer for the network (not implemented yet) */
+ CV_WRAP void deleteLayer(LayerId layer);
+
+ /** @brief Connects output of the first layer to input of the second layer.
+ * @param outPin descriptor of the first layer output.
+ * @param inpPin descriptor of the second layer input.
+ *
+ * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
+ * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
+ * If this part is empty then the network input pseudo layer will be used;
+ * - the second optional part of the template <DFN>input_number</DFN>
+ * is either number of the layer input, either label one.
+ * If this part is omitted then the first layer input will be used.
+ *
+ * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
+ */
+ CV_WRAP void connect(String outPin, String inpPin);
+
+ /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
+ * @param outLayerId identifier of the first layer
+ * @param inpLayerId identifier of the second layer
+ * @param outNum number of the first layer output
+ * @param inpNum number of the second layer input
+ */
+ void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
+
+ /** @brief Sets outputs names of the network input pseudo layer.
+ *
+ * Each net always has special own the network input pseudo layer with id=0.
+ * This layer stores the user blobs only and don't make any computations.
+ * In fact, this layer provides the only way to pass user data into the network.
+ * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
+ */
+ CV_WRAP void setNetInputs(const std::vector<String> &inputBlobNames);
+
+ /** @brief Initializes and allocates all layers. */
+ CV_WRAP void allocate();
+
+ /** @brief Runs forward pass to compute output of layer @p toLayer.
+ * @details By default runs forward pass for the whole network.
+ */
+ CV_WRAP void forward(LayerId toLayer = String());
+ /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */
+ void forward(LayerId startLayer, LayerId toLayer);
+ /** @overload */
+ void forward(const std::vector<LayerId> &startLayers, const std::vector<LayerId> &toLayers);
+
+ //TODO:
+ /** @brief Optimized forward.
+ * @warning Not implemented yet.
+ * @details Makes forward only those layers which weren't changed after previous forward().
+ */
+ void forwardOpt(LayerId toLayer);
+ /** @overload */
+ void forwardOpt(const std::vector<LayerId> &toLayers);
+
+ /** @brief Sets the new value for the layer output blob
+ * @param outputName descriptor of the updating layer output blob.
+ * @param blob new blob.
+ * @see connect(String, String) to know format of the descriptor.
+ * @note If updating blob is not empty then @p blob must have the same shape,
+ * because network reshaping is not implemented yet.
+ */
+ CV_WRAP void setBlob(String outputName, const Blob &blob);
+
+ /** @brief Returns the layer output blob.
+ * @param outputName the descriptor of the returning layer output blob.
+ * @see connect(String, String)
+ */
+ CV_WRAP Blob getBlob(String outputName);
+
+ /** @brief Sets the new value for the learned param of the layer.
+ * @param layer name or id of the layer.
+ * @param numParam index of the layer parameter in the Layer::blobs array.
+ * @param blob the new value.
+ * @see Layer::blobs
+ * @note If shape of the new blob differs from the previous shape,
+ * then the following forward pass may fail.
+ */
+ CV_WRAP void setParam(LayerId layer, int numParam, const Blob &blob);
+
+ /** @brief Returns parameter blob of the layer.
+ * @param layer name or id of the layer.
+ * @param numParam index of the layer parameter in the Layer::blobs array.
+ * @see Layer::blobs
+ */
+ CV_WRAP Blob getParam(LayerId layer, int numParam = 0);
+
+ /** @brief Returns indexes of layers with unconnected outputs.
+ */
+ CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
+ private:
+
+ struct Impl;
+ Ptr<Impl> impl;
+ };
+
+ /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */
+ class CV_EXPORTS_W Importer
+ {
+ public:
+
+ /** @brief Adds loaded layers into the @p net and sets connections between them. */
+ CV_WRAP virtual void populateNet(Net net) = 0;
+
+ virtual ~Importer();
+ };
+
+ /** @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network.
+ * @param prototxt path to the .prototxt file with text description of the network architecture.
+ * @param caffeModel path to the .caffemodel file with learned network.
+ * @returns Pointer to the created importer, NULL in failure cases.
+ */
+ CV_EXPORTS_W Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String());
+
+ /** @brief Reads a network model stored in Caffe model files.
+ * @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls.
+ */
+ CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
+
+ /** @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network.
+ * @param model path to the .pb file with binary protobuf description of the network architecture.
+ * @returns Pointer to the created importer, NULL in failure cases.
+ */
+ CV_EXPORTS Ptr<Importer> createTensorflowImporter(const String &model);
+
+ /** @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network.
+ * @param filename path to the file, dumped from Torch by using torch.save() function.
+ * @param isBinary specifies whether the network was serialized in ascii mode or binary.
+ * @returns Pointer to the created importer, NULL in failure cases.
+ *
+ * @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its.
+ *
+ * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
+ * which has various bit-length on different systems.
+ *
+ * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
+ * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
+ *
+ * List of supported layers (i.e. object instances derived from Torch nn.Module class):
+ * - nn.Sequential
+ * - nn.Parallel
+ * - nn.Concat
+ * - nn.Linear
+ * - nn.SpatialConvolution
+ * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
+ * - nn.ReLU, nn.TanH, nn.Sigmoid
+ * - nn.Reshape
+ *
+ * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
+ */
+ CV_EXPORTS_W Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true);
+
+ /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
+ * @warning This function has the same limitations as createTorchImporter().
+ */
+ CV_EXPORTS_W Blob readTorchBlob(const String &filename, bool isBinary = true);
+
+//! @}
+}
+}
+
+#include <opencv2/dnn/layer.hpp>
+#include <opencv2/dnn/dnn.inl.hpp>
+
+#endif /* __OPENCV_DNN_DNN_HPP__ */
diff --git a/thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp b/thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp
new file mode 100644
index 0000000..a272044
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp
@@ -0,0 +1,351 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_INL_HPP__
+#define __OPENCV_DNN_DNN_INL_HPP__
+
+#include <opencv2/dnn.hpp>
+
+namespace cv
+{
+namespace dnn
+{
+
+template<typename TypeIter>
+DictValue DictValue::arrayInt(TypeIter begin, int size)
+{
+ DictValue res(Param::INT, new AutoBuffer<int64, 1>(size));
+ for (int j = 0; j < size; begin++, j++)
+ (*res.pi)[j] = *begin;
+ return res;
+}
+
+template<typename TypeIter>
+DictValue DictValue::arrayReal(TypeIter begin, int size)
+{
+ DictValue res(Param::REAL, new AutoBuffer<double, 1>(size));
+ for (int j = 0; j < size; begin++, j++)
+ (*res.pd)[j] = *begin;
+ return res;
+}
+
+template<typename TypeIter>
+DictValue DictValue::arrayString(TypeIter begin, int size)
+{
+ DictValue res(Param::STRING, new AutoBuffer<String, 1>(size));
+ for (int j = 0; j < size; begin++, j++)
+ (*res.ps)[j] = *begin;
+ return res;
+}
+
+template<>
+inline DictValue DictValue::get<DictValue>(int idx) const
+{
+ CV_Assert(idx == -1);
+ return *this;
+}
+
+template<>
+inline int64 DictValue::get<int64>(int idx) const
+{
+ CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size()));
+ idx = (idx == -1) ? 0 : idx;
+
+ if (type == Param::INT)
+ {
+ return (*pi)[idx];
+ }
+ else if (type == Param::REAL)
+ {
+ double doubleValue = (*pd)[idx];
+
+ double fracpart, intpart;
+ fracpart = std::modf(doubleValue, &intpart);
+ CV_Assert(fracpart == 0.0);
+
+ return (int64)doubleValue;
+ }
+ else
+ {
+ CV_Assert(isInt() || isReal());
+ return 0;
+ }
+}
+
+template<>
+inline int DictValue::get<int>(int idx) const
+{
+ return (int)get<int64>(idx);
+}
+
+template<>
+inline unsigned DictValue::get<unsigned>(int idx) const
+{
+ return (unsigned)get<int64>(idx);
+}
+
+template<>
+inline bool DictValue::get<bool>(int idx) const
+{
+ return (get<int64>(idx) != 0);
+}
+
+template<>
+inline double DictValue::get<double>(int idx) const
+{
+ CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size()));
+ idx = (idx == -1) ? 0 : idx;
+
+ if (type == Param::REAL)
+ {
+ return (*pd)[idx];
+ }
+ else if (type == Param::INT)
+ {
+ return (double)(*pi)[idx];
+ }
+ else
+ {
+ CV_Assert(isReal() || isInt());
+ return 0;
+ }
+}
+
+template<>
+inline float DictValue::get<float>(int idx) const
+{
+ return (float)get<double>(idx);
+}
+
+template<>
+inline String DictValue::get<String>(int idx) const
+{
+ CV_Assert(isString());
+ CV_Assert((idx == -1 && ps->size() == 1) || (idx >= 0 && idx < (int)ps->size()));
+ return (*ps)[(idx == -1) ? 0 : idx];
+}
+
+inline void DictValue::release()
+{
+ switch (type)
+ {
+ case Param::INT:
+ delete pi;
+ break;
+ case Param::STRING:
+ delete ps;
+ break;
+ case Param::REAL:
+ delete pd;
+ break;
+ }
+}
+
+inline DictValue::~DictValue()
+{
+ release();
+}
+
+inline DictValue & DictValue::operator=(const DictValue &r)
+{
+ if (&r == this)
+ return *this;
+
+ if (r.type == Param::INT)
+ {
+ AutoBuffer<int64, 1> *tmp = new AutoBuffer<int64, 1>(*r.pi);
+ release();
+ pi = tmp;
+ }
+ else if (r.type == Param::STRING)
+ {
+ AutoBuffer<String, 1> *tmp = new AutoBuffer<String, 1>(*r.ps);
+ release();
+ ps = tmp;
+ }
+ else if (r.type == Param::REAL)
+ {
+ AutoBuffer<double, 1> *tmp = new AutoBuffer<double, 1>(*r.pd);
+ release();
+ pd = tmp;
+ }
+
+ type = r.type;
+
+ return *this;
+}
+
+inline DictValue::DictValue(const DictValue &r)
+{
+ type = r.type;
+
+ if (r.type == Param::INT)
+ pi = new AutoBuffer<int64, 1>(*r.pi);
+ else if (r.type == Param::STRING)
+ ps = new AutoBuffer<String, 1>(*r.ps);
+ else if (r.type == Param::REAL)
+ pd = new AutoBuffer<double, 1>(*r.pd);
+}
+
+inline bool DictValue::isString() const
+{
+ return (type == Param::STRING);
+}
+
+inline bool DictValue::isInt() const
+{
+ return (type == Param::INT);
+}
+
+inline bool DictValue::isReal() const
+{
+ return (type == Param::REAL || type == Param::INT);
+}
+
+inline int DictValue::size() const
+{
+ switch (type)
+ {
+ case Param::INT:
+ return (int)pi->size();
+ break;
+ case Param::STRING:
+ return (int)ps->size();
+ break;
+ case Param::REAL:
+ return (int)pd->size();
+ break;
+ default:
+ CV_Error(Error::StsInternal, "");
+ return -1;
+ }
+}
+
+inline std::ostream &operator<<(std::ostream &stream, const DictValue &dictv)
+{
+ int i;
+
+ if (dictv.isInt())
+ {
+ for (i = 0; i < dictv.size() - 1; i++)
+ stream << dictv.get<int64>(i) << ", ";
+ stream << dictv.get<int64>(i);
+ }
+ else if (dictv.isReal())
+ {
+ for (i = 0; i < dictv.size() - 1; i++)
+ stream << dictv.get<double>(i) << ", ";
+ stream << dictv.get<double>(i);
+ }
+ else if (dictv.isString())
+ {
+ for (i = 0; i < dictv.size() - 1; i++)
+ stream << "\"" << dictv.get<String>(i) << "\", ";
+ stream << dictv.get<String>(i);
+ }
+
+ return stream;
+}
+
+/////////////////////////////////////////////////////////////////
+
+inline bool Dict::has(const String &key) const
+{
+ return dict.count(key) != 0;
+}
+
+inline DictValue *Dict::ptr(const String &key)
+{
+ _Dict::iterator i = dict.find(key);
+ return (i == dict.end()) ? NULL : &i->second;
+}
+
+inline const DictValue &Dict::get(const String &key) const
+{
+ _Dict::const_iterator i = dict.find(key);
+ if (i == dict.end())
+ CV_Error(Error::StsObjectNotFound, "Required argument \"" + key + "\" not found into dictionary");
+ return i->second;
+}
+
+template <typename T>
+inline T Dict::get(const String &key) const
+{
+ return this->get(key).get<T>();
+}
+
+template <typename T>
+inline T Dict::get(const String &key, const T &defaultValue) const
+{
+ _Dict::const_iterator i = dict.find(key);
+
+ if (i != dict.end())
+ return i->second.get<T>();
+ else
+ return defaultValue;
+}
+
+template<typename T>
+inline const T &Dict::set(const String &key, const T &value)
+{
+ _Dict::iterator i = dict.find(key);
+
+ if (i != dict.end())
+ i->second = DictValue(value);
+ else
+ dict.insert(std::make_pair(key, DictValue(value)));
+
+ return value;
+}
+
+inline std::ostream &operator<<(std::ostream &stream, const Dict &dict)
+{
+ Dict::_Dict::const_iterator it;
+ for (it = dict.dict.begin(); it != dict.dict.end(); it++)
+ stream << it->first << " : " << it->second << "\n";
+
+ return stream;
+}
+
+}
+}
+
+#endif
diff --git a/thirdparty1/linux/include/opencv2/dnn/layer.hpp b/thirdparty1/linux/include/opencv2/dnn/layer.hpp
new file mode 100644
index 0000000..e051041
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/layer.hpp
@@ -0,0 +1,148 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_LAYER_HPP__
+#define __OPENCV_DNN_LAYER_HPP__
+#include <opencv2/dnn.hpp>
+
+namespace cv
+{
+namespace dnn
+{
+//! @addtogroup dnn
+//! @{
+//!
+//! @defgroup dnnLayerFactory Utilities for New Layers Registration
+//! @{
+
+/** @brief %Layer factory allows to create instances of registered layers. */
+class CV_EXPORTS LayerFactory
+{
+public:
+
+ //! Each Layer class must provide this function to the factory
+ typedef Ptr<Layer>(*Constuctor)(LayerParams &params);
+
+ //! Registers the layer class with typename @p type and specified @p constructor.
+ static void registerLayer(const String &type, Constuctor constructor);
+
+ //! Unregisters registered layer with specified type name.
+ static void unregisterLayer(const String &type);
+
+ /** @brief Creates instance of registered layer.
+ * @param type type name of creating layer.
+ * @param params parameters which will be used for layer initialization.
+ */
+ static Ptr<Layer> createLayerInstance(const String &type, LayerParams& params);
+
+private:
+ LayerFactory();
+
+ struct Impl;
+ static Ptr<Impl> impl();
+};
+
+/** @brief Registers layer constructor in runtime.
+* @param type string, containing type name of the layer.
+* @param constuctorFunc pointer to the function of type LayerRegister::Constuctor, which creates the layer.
+* @details This macros must be placed inside the function code.
+*/
+#define REG_RUNTIME_LAYER_FUNC(type, constuctorFunc) \
+ cv::dnn::LayerFactory::registerLayer(#type, constuctorFunc);
+
+/** @brief Registers layer class in runtime.
+ * @param type string, containing type name of the layer.
+ * @param class C++ class, derived from Layer.
+ * @details This macros must be placed inside the function code.
+ */
+#define REG_RUNTIME_LAYER_CLASS(type, class) \
+ cv::dnn::LayerFactory::registerLayer(#type, _layerDynamicRegisterer<class>);
+
+/** @brief Registers layer constructor on module load time.
+* @param type string, containing type name of the layer.
+* @param constuctorFunc pointer to the function of type LayerRegister::Constuctor, which creates the layer.
+* @details This macros must be placed outside the function code.
+*/
+#define REG_STATIC_LAYER_FUNC(type, constuctorFunc) \
+static cv::dnn::_LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, constuctorFunc);
+
+/** @brief Registers layer class on module load time.
+ * @param type string, containing type name of the layer.
+ * @param class C++ class, derived from Layer.
+ * @details This macros must be placed outside the function code.
+ */
+#define REG_STATIC_LAYER_CLASS(type, class) \
+Ptr<Layer> __LayerStaticRegisterer_func_##type(LayerParams &params) \
+ { return Ptr<Layer>(new class(params)); } \
+static _LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, __LayerStaticRegisterer_func_##type);
+
+
+//! @}
+//! @}
+
+
+template<typename LayerClass>
+Ptr<Layer> _layerDynamicRegisterer(LayerParams &params)
+{
+ return Ptr<Layer>(new LayerClass(params));
+}
+
+//allows automatically register created layer on module load time
+class _LayerStaticRegisterer
+{
+ String type;
+public:
+
+ _LayerStaticRegisterer(const String &layerType, LayerFactory::Constuctor layerConstuctor)
+ {
+ this->type = layerType;
+ LayerFactory::registerLayer(layerType, layerConstuctor);
+ }
+
+ ~_LayerStaticRegisterer()
+ {
+ LayerFactory::unregisterLayer(type);
+ }
+};
+
+}
+}
+#endif
diff --git a/thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp b/thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp
new file mode 100644
index 0000000..f52e5b9
--- /dev/null
+++ b/thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp
@@ -0,0 +1,137 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_DNN_DNN_SHAPE_UTILS_HPP__
+#define __OPENCV_DNN_DNN_SHAPE_UTILS_HPP__
+
+#include <opencv2/core.hpp>
+#include <ostream>
+
+namespace cv {
+namespace dnn {
+
+//Useful shortcut
+typedef BlobShape Shape;
+
+inline std::ostream &operator<< (std::ostream &s, cv::Range &r)
+{
+ return s << "[" << r.start << ", " << r.end << ")";
+}
+
+//Reshaping
+//TODO: add -1 specifier for automatic size inferring
+
+template<typename Mat>
+void reshape(Mat &m, const BlobShape &shape)
+{
+ m = m.reshape(1, shape.dims(), shape.ptr());
+}
+
+template<typename Mat>
+Mat reshaped(const Mat &m, const BlobShape &shape)
+{
+ return m.reshape(1, shape.dims(), shape.ptr());
+}
+
+
+//Slicing
+
+struct _Range : public cv::Range
+{
+ _Range(const Range &r) : cv::Range(r) {}
+ _Range(int start, int size = 1) : cv::Range(start, start + size) {}
+};
+
+template<typename Mat>
+Mat slice(const Mat &m, const _Range &r0)
+{
+ //CV_Assert(m.dims >= 1);
+ cv::AutoBuffer<cv::Range, 4> ranges(m.dims);
+ for (int i = 1; i < m.dims; i++)
+ ranges[i] = Range::all();
+ ranges[0] = r0;
+ return m(&ranges[0]);
+}
+
+template<typename Mat>
+Mat slice(const Mat &m, const _Range &r0, const _Range &r1)
+{
+ CV_Assert(m.dims >= 2);
+ cv::AutoBuffer<cv::Range, 4> ranges(m.dims);
+ for (int i = 2; i < m.dims; i++)
+ ranges[i] = Range::all();
+ ranges[0] = r0;
+ ranges[1] = r1;
+ return m(&ranges[0]);
+}
+
+template<typename Mat>
+Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2)
+{
+ CV_Assert(m.dims <= 3);
+ cv::AutoBuffer<cv::Range, 4> ranges(m.dims);
+ for (int i = 3; i < m.dims; i++)
+ ranges[i] = Range::all();
+ ranges[0] = r0;
+ ranges[1] = r1;
+ ranges[2] = r2;
+ return m(&ranges[0]);
+}
+
+template<typename Mat>
+Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2, const _Range &r3)
+{
+ CV_Assert(m.dims <= 4);
+ cv::AutoBuffer<cv::Range, 4> ranges(m.dims);
+ for (int i = 4; i < m.dims; i++)
+ ranges[i] = Range::all();
+ ranges[0] = r0;
+ ranges[1] = r1;
+ ranges[2] = r2;
+ ranges[3] = r3;
+ return m(&ranges[0]);
+}
+
+BlobShape computeShapeByReshapeMask(const BlobShape &srcShape, const BlobShape &maskShape, Range srcRange = Range::all());
+
+}
+}
+#endif