summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/xphoto/white_balance.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/xphoto/white_balance.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/xphoto/white_balance.hpp230
1 files changed, 230 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/xphoto/white_balance.hpp b/thirdparty/linux/include/opencv2/xphoto/white_balance.hpp
new file mode 100644
index 0000000..1767f1f
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/xphoto/white_balance.hpp
@@ -0,0 +1,230 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_SIMPLE_COLOR_BALANCE_HPP__
+#define __OPENCV_SIMPLE_COLOR_BALANCE_HPP__
+
+/** @file
+@date Jun 26, 2014
+@author Yury Gitman
+*/
+
+#include <opencv2/core.hpp>
+
+namespace cv
+{
+namespace xphoto
+{
+
+//! @addtogroup xphoto
+//! @{
+
+/** @brief The base class for auto white balance algorithms.
+ */
+class CV_EXPORTS_W WhiteBalancer : public Algorithm
+{
+ public:
+ /** @brief Applies white balancing to the input image
+
+ @param src Input image
+ @param dst White balancing result
+ @sa cvtColor, equalizeHist
+ */
+ CV_WRAP virtual void balanceWhite(InputArray src, OutputArray dst) = 0;
+};
+
+/** @brief A simple white balance algorithm that works by independently stretching
+ each of the input image channels to the specified range. For increased robustness
+ it ignores the top and bottom \f$p\%\f$ of pixel values.
+ */
+class CV_EXPORTS_W SimpleWB : public WhiteBalancer
+{
+ public:
+ /** @brief Input image range minimum value
+ @see setInputMin */
+ CV_WRAP virtual float getInputMin() const = 0;
+ /** @copybrief getInputMin @see getInputMin */
+ CV_WRAP virtual void setInputMin(float val) = 0;
+
+ /** @brief Input image range maximum value
+ @see setInputMax */
+ CV_WRAP virtual float getInputMax() const = 0;
+ /** @copybrief getInputMax @see getInputMax */
+ CV_WRAP virtual void setInputMax(float val) = 0;
+
+ /** @brief Output image range minimum value
+ @see setOutputMin */
+ CV_WRAP virtual float getOutputMin() const = 0;
+ /** @copybrief getOutputMin @see getOutputMin */
+ CV_WRAP virtual void setOutputMin(float val) = 0;
+
+ /** @brief Output image range maximum value
+ @see setOutputMax */
+ CV_WRAP virtual float getOutputMax() const = 0;
+ /** @copybrief getOutputMax @see getOutputMax */
+ CV_WRAP virtual void setOutputMax(float val) = 0;
+
+ /** @brief Percent of top/bottom values to ignore
+ @see setP */
+ CV_WRAP virtual float getP() const = 0;
+ /** @copybrief getP @see getP */
+ CV_WRAP virtual void setP(float val) = 0;
+};
+
+/** @brief Creates an instance of SimpleWB
+ */
+CV_EXPORTS_W Ptr<SimpleWB> createSimpleWB();
+
+/** @brief Gray-world white balance algorithm
+
+This algorithm scales the values of pixels based on a
+gray-world assumption which states that the average of all channels
+should result in a gray image.
+
+It adds a modification which thresholds pixels based on their
+saturation value and only uses pixels below the provided threshold in
+finding average pixel values.
+
+Saturation is calculated using the following for a 3-channel RGB image per
+pixel I and is in the range [0, 1]:
+
+\f[ \texttt{Saturation} [I] = \frac{\textrm{max}(R,G,B) - \textrm{min}(R,G,B)
+}{\textrm{max}(R,G,B)} \f]
+
+A threshold of 1 means that all pixels are used to white-balance, while a
+threshold of 0 means no pixels are used. Lower thresholds are useful in
+white-balancing saturated images.
+
+Currently supports images of type @ref CV_8UC3 and @ref CV_16UC3.
+ */
+class CV_EXPORTS_W GrayworldWB : public WhiteBalancer
+{
+ public:
+ /** @brief Maximum saturation for a pixel to be included in the
+ gray-world assumption
+ @see setSaturationThreshold */
+ CV_WRAP virtual float getSaturationThreshold() const = 0;
+ /** @copybrief getSaturationThreshold @see getSaturationThreshold */
+ CV_WRAP virtual void setSaturationThreshold(float val) = 0;
+};
+
+/** @brief Creates an instance of GrayworldWB
+ */
+CV_EXPORTS_W Ptr<GrayworldWB> createGrayworldWB();
+
+/** @brief More sophisticated learning-based automatic white balance algorithm.
+
+As @ref GrayworldWB, this algorithm works by applying different gains to the input
+image channels, but their computation is a bit more involved compared to the
+simple gray-world assumption. More details about the algorithm can be found in
+@cite Cheng2015 .
+
+To mask out saturated pixels this function uses only pixels that satisfy the
+following condition:
+
+\f[ \frac{\textrm{max}(R,G,B)}{\texttt{range_max_val}} < \texttt{saturation_thresh} \f]
+
+Currently supports images of type @ref CV_8UC3 and @ref CV_16UC3.
+ */
+class CV_EXPORTS_W LearningBasedWB : public WhiteBalancer
+{
+ public:
+ /** @brief Implements the feature extraction part of the algorithm.
+
+ In accordance with @cite Cheng2015 , computes the following features for the input image:
+ 1. Chromaticity of an average (R,G,B) tuple
+ 2. Chromaticity of the brightest (R,G,B) tuple (while ignoring saturated pixels)
+ 3. Chromaticity of the dominant (R,G,B) tuple (the one that has the highest value in the RGB histogram)
+ 4. Mode of the chromaticity palette, that is constructed by taking 300 most common colors according to
+ the RGB histogram and projecting them on the chromaticity plane. Mode is the most high-density point
+ of the palette, which is computed by a straightforward fixed-bandwidth kernel density estimator with
+ a Epanechnikov kernel function.
+
+ @param src Input three-channel image (BGR color space is assumed).
+ @param dst An array of four (r,g) chromaticity tuples corresponding to the features listed above.
+ */
+ CV_WRAP virtual void extractSimpleFeatures(InputArray src, OutputArray dst) = 0;
+
+ /** @brief Maximum possible value of the input image (e.g. 255 for 8 bit images,
+ 4095 for 12 bit images)
+ @see setRangeMaxVal */
+ CV_WRAP virtual int getRangeMaxVal() const = 0;
+ /** @copybrief getRangeMaxVal @see getRangeMaxVal */
+ CV_WRAP virtual void setRangeMaxVal(int val) = 0;
+
+ /** @brief Threshold that is used to determine saturated pixels, i.e. pixels where at least one of the
+ channels exceeds \f$\texttt{saturation_threshold}\times\texttt{range_max_val}\f$ are ignored.
+ @see setSaturationThreshold */
+ CV_WRAP virtual float getSaturationThreshold() const = 0;
+ /** @copybrief getSaturationThreshold @see getSaturationThreshold */
+ CV_WRAP virtual void setSaturationThreshold(float val) = 0;
+
+ /** @brief Defines the size of one dimension of a three-dimensional RGB histogram that is used internally
+ by the algorithm. It often makes sense to increase the number of bins for images with higher bit depth
+ (e.g. 256 bins for a 12 bit image).
+ @see setHistBinNum */
+ CV_WRAP virtual int getHistBinNum() const = 0;
+ /** @copybrief getHistBinNum @see getHistBinNum */
+ CV_WRAP virtual void setHistBinNum(int val) = 0;
+};
+
+/** @brief Creates an instance of LearningBasedWB
+
+@param path_to_model Path to a .yml file with the model. If not specified, the default model is used
+ */
+CV_EXPORTS_W Ptr<LearningBasedWB> createLearningBasedWB(const String& path_to_model = String());
+
+/** @brief Implements an efficient fixed-point approximation for applying channel gains, which is
+ the last step of multiple white balance algorithms.
+
+@param src Input three-channel image in the BGR color space (either CV_8UC3 or CV_16UC3)
+@param dst Output image of the same size and type as src.
+@param gainB gain for the B channel
+@param gainG gain for the G channel
+@param gainR gain for the R channel
+*/
+CV_EXPORTS_W void applyChannelGains(InputArray src, OutputArray dst, float gainB, float gainG, float gainR);
+//! @}
+}
+}
+
+#endif // __OPENCV_SIMPLE_COLOR_BALANCE_HPP__