summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/stitching/detail/matchers.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/stitching/detail/matchers.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/stitching/detail/matchers.hpp355
1 files changed, 355 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/stitching/detail/matchers.hpp b/thirdparty/linux/include/opencv2/stitching/detail/matchers.hpp
new file mode 100644
index 0000000..bc81a84
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/stitching/detail/matchers.hpp
@@ -0,0 +1,355 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_STITCHING_MATCHERS_HPP
+#define OPENCV_STITCHING_MATCHERS_HPP
+
+#include "opencv2/core.hpp"
+#include "opencv2/features2d.hpp"
+
+#include "opencv2/opencv_modules.hpp"
+
+#ifdef HAVE_OPENCV_XFEATURES2D
+# include "opencv2/xfeatures2d/cuda.hpp"
+#endif
+
+namespace cv {
+namespace detail {
+
+//! @addtogroup stitching_match
+//! @{
+
+/** @brief Structure containing image keypoints and descriptors. */
+struct CV_EXPORTS ImageFeatures
+{
+ int img_idx;
+ Size img_size;
+ std::vector<KeyPoint> keypoints;
+ UMat descriptors;
+};
+
+/** @brief Feature finders base class */
+class CV_EXPORTS FeaturesFinder
+{
+public:
+ virtual ~FeaturesFinder() {}
+ /** @overload */
+ void operator ()(InputArray image, ImageFeatures &features);
+ /** @brief Finds features in the given image.
+
+ @param image Source image
+ @param features Found features
+ @param rois Regions of interest
+
+ @sa detail::ImageFeatures, Rect_
+ */
+ void operator ()(InputArray image, ImageFeatures &features, const std::vector<cv::Rect> &rois);
+ /** @brief Finds features in the given images in parallel.
+
+ @param images Source images
+ @param features Found features for each image
+ @param rois Regions of interest for each image
+
+ @sa detail::ImageFeatures, Rect_
+ */
+ void operator ()(InputArrayOfArrays images, std::vector<ImageFeatures> &features,
+ const std::vector<std::vector<cv::Rect> > &rois);
+ /** @overload */
+ void operator ()(InputArrayOfArrays images, std::vector<ImageFeatures> &features);
+ /** @brief Frees unused memory allocated before if there is any. */
+ virtual void collectGarbage() {}
+
+ /* TODO OpenCV ABI 4.x
+ reimplement this as public method similar to FeaturesMatcher and remove private function hack
+ @return True, if it's possible to use the same finder instance in parallel, false otherwise
+ bool isThreadSafe() const { return is_thread_safe_; }
+ */
+
+protected:
+ /** @brief This method must implement features finding logic in order to make the wrappers
+ detail::FeaturesFinder::operator()_ work.
+
+ @param image Source image
+ @param features Found features
+
+ @sa detail::ImageFeatures */
+ virtual void find(InputArray image, ImageFeatures &features) = 0;
+ /** @brief uses dynamic_cast to determine thread-safety
+ @return True, if it's possible to use the same finder instance in parallel, false otherwise
+ */
+ bool isThreadSafe() const;
+};
+
+/** @brief SURF features finder.
+
+@sa detail::FeaturesFinder, SURF
+*/
+class CV_EXPORTS SurfFeaturesFinder : public FeaturesFinder
+{
+public:
+ SurfFeaturesFinder(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4,
+ int num_octaves_descr = /*4*/3, int num_layers_descr = /*2*/4);
+
+private:
+ void find(InputArray image, ImageFeatures &features);
+
+ Ptr<FeatureDetector> detector_;
+ Ptr<DescriptorExtractor> extractor_;
+ Ptr<Feature2D> surf;
+};
+
+/** @brief ORB features finder. :
+
+@sa detail::FeaturesFinder, ORB
+*/
+class CV_EXPORTS OrbFeaturesFinder : public FeaturesFinder
+{
+public:
+ OrbFeaturesFinder(Size _grid_size = Size(3,1), int nfeatures=1500, float scaleFactor=1.3f, int nlevels=5);
+
+private:
+ void find(InputArray image, ImageFeatures &features);
+
+ Ptr<ORB> orb;
+ Size grid_size;
+};
+
+/** @brief AKAZE features finder. :
+
+@sa detail::FeaturesFinder, AKAZE
+*/
+class CV_EXPORTS AKAZEFeaturesFinder : public detail::FeaturesFinder
+{
+public:
+ AKAZEFeaturesFinder(int descriptor_type = AKAZE::DESCRIPTOR_MLDB,
+ int descriptor_size = 0,
+ int descriptor_channels = 3,
+ float threshold = 0.001f,
+ int nOctaves = 4,
+ int nOctaveLayers = 4,
+ int diffusivity = KAZE::DIFF_PM_G2);
+
+private:
+ void find(InputArray image, detail::ImageFeatures &features);
+
+ Ptr<AKAZE> akaze;
+};
+
+#ifdef HAVE_OPENCV_XFEATURES2D
+class CV_EXPORTS SurfFeaturesFinderGpu : public FeaturesFinder
+{
+public:
+ SurfFeaturesFinderGpu(double hess_thresh = 300., int num_octaves = 3, int num_layers = 4,
+ int num_octaves_descr = 4, int num_layers_descr = 2);
+
+ void collectGarbage();
+
+private:
+ void find(InputArray image, ImageFeatures &features);
+
+ cuda::GpuMat image_;
+ cuda::GpuMat gray_image_;
+ cuda::SURF_CUDA surf_;
+ cuda::GpuMat keypoints_;
+ cuda::GpuMat descriptors_;
+ int num_octaves_, num_layers_;
+ int num_octaves_descr_, num_layers_descr_;
+};
+#endif
+
+/** @brief Structure containing information about matches between two images.
+
+It's assumed that there is a transformation between those images. Transformation may be
+homography or affine transformation based on selected matcher.
+
+@sa detail::FeaturesMatcher
+*/
+struct CV_EXPORTS MatchesInfo
+{
+ MatchesInfo();
+ MatchesInfo(const MatchesInfo &other);
+ const MatchesInfo& operator =(const MatchesInfo &other);
+
+ int src_img_idx, dst_img_idx; //!< Images indices (optional)
+ std::vector<DMatch> matches;
+ std::vector<uchar> inliers_mask; //!< Geometrically consistent matches mask
+ int num_inliers; //!< Number of geometrically consistent matches
+ Mat H; //!< Estimated transformation
+ double confidence; //!< Confidence two images are from the same panorama
+};
+
+/** @brief Feature matchers base class. */
+class CV_EXPORTS FeaturesMatcher
+{
+public:
+ virtual ~FeaturesMatcher() {}
+
+ /** @overload
+ @param features1 First image features
+ @param features2 Second image features
+ @param matches_info Found matches
+ */
+ void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,
+ MatchesInfo& matches_info) { match(features1, features2, matches_info); }
+
+ /** @brief Performs images matching.
+
+ @param features Features of the source images
+ @param pairwise_matches Found pairwise matches
+ @param mask Mask indicating which image pairs must be matched
+
+ The function is parallelized with the TBB library.
+
+ @sa detail::MatchesInfo
+ */
+ void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
+ const cv::UMat &mask = cv::UMat());
+
+ /** @return True, if it's possible to use the same matcher instance in parallel, false otherwise
+ */
+ bool isThreadSafe() const { return is_thread_safe_; }
+
+ /** @brief Frees unused memory allocated before if there is any.
+ */
+ virtual void collectGarbage() {}
+
+protected:
+ FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}
+
+ /** @brief This method must implement matching logic in order to make the wrappers
+ detail::FeaturesMatcher::operator()_ work.
+
+ @param features1 first image features
+ @param features2 second image features
+ @param matches_info found matches
+ */
+ virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
+ MatchesInfo& matches_info) = 0;
+
+ bool is_thread_safe_;
+};
+
+/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the
+ratio between descriptor distances is greater than the threshold match_conf
+
+@sa detail::FeaturesMatcher
+ */
+class CV_EXPORTS BestOf2NearestMatcher : public FeaturesMatcher
+{
+public:
+ /** @brief Constructs a "best of 2 nearest" matcher.
+
+ @param try_use_gpu Should try to use GPU or not
+ @param match_conf Match distances ration threshold
+ @param num_matches_thresh1 Minimum number of matches required for the 2D projective transform
+ estimation used in the inliers classification step
+ @param num_matches_thresh2 Minimum number of matches required for the 2D projective transform
+ re-estimation on inliers
+ */
+ BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
+ int num_matches_thresh2 = 6);
+
+ void collectGarbage();
+
+protected:
+ void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info);
+
+ int num_matches_thresh1_;
+ int num_matches_thresh2_;
+ Ptr<FeaturesMatcher> impl_;
+};
+
+class CV_EXPORTS BestOf2NearestRangeMatcher : public BestOf2NearestMatcher
+{
+public:
+ BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,
+ int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);
+
+ void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
+ const cv::UMat &mask = cv::UMat());
+
+
+protected:
+ int range_width_;
+};
+
+/** @brief Features matcher similar to cv::detail::BestOf2NearestMatcher which
+finds two best matches for each feature and leaves the best one only if the
+ratio between descriptor distances is greater than the threshold match_conf.
+
+Unlike cv::detail::BestOf2NearestMatcher this matcher uses affine
+transformation (affine trasformation estimate will be placed in matches_info).
+
+@sa cv::detail::FeaturesMatcher cv::detail::BestOf2NearestMatcher
+ */
+class CV_EXPORTS AffineBestOf2NearestMatcher : public BestOf2NearestMatcher
+{
+public:
+ /** @brief Constructs a "best of 2 nearest" matcher that expects affine trasformation
+ between images
+
+ @param full_affine whether to use full affine transformation with 6 degress of freedom or reduced
+ transformation with 4 degrees of freedom using only rotation, translation and uniform scaling
+ @param try_use_gpu Should try to use GPU or not
+ @param match_conf Match distances ration threshold
+ @param num_matches_thresh1 Minimum number of matches required for the 2D affine transform
+ estimation used in the inliers classification step
+
+ @sa cv::estimateAffine2D cv::estimateAffinePartial2D
+ */
+ AffineBestOf2NearestMatcher(bool full_affine = false, bool try_use_gpu = false,
+ float match_conf = 0.3f, int num_matches_thresh1 = 6) :
+ BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh1),
+ full_affine_(full_affine) {}
+
+protected:
+ void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info);
+
+ bool full_affine_;
+};
+
+//! @} stitching_match
+
+} // namespace detail
+} // namespace cv
+
+#endif // OPENCV_STITCHING_MATCHERS_HPP