summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/stereo/descriptor.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/stereo/descriptor.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/stereo/descriptor.hpp452
1 files changed, 452 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/stereo/descriptor.hpp b/thirdparty/linux/include/opencv2/stereo/descriptor.hpp
new file mode 100644
index 0000000..bdbd7ce
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/stereo/descriptor.hpp
@@ -0,0 +1,452 @@
+//By downloading, copying, installing or using the software you agree to this license.
+//If you do not agree to this license, do not download, install,
+//copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+// (3-clause BSD License)
+//
+//Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
+//Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
+//Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
+//Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
+//Copyright (C) 2015, OpenCV Foundation, all rights reserved.
+//Copyright (C) 2015, Itseez Inc., all rights reserved.
+//Third party copyrights are property of their respective owners.
+//
+//Redistribution and use in source and binary forms, with or without modification,
+//are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * Neither the names of the copyright holders nor the names of the contributors
+// may be used to endorse or promote products derived from this software
+// without specific prior written permission.
+//
+//This software is provided by the copyright holders and contributors "as is" and
+//any express or implied warranties, including, but not limited to, the implied
+//warranties of merchantability and fitness for a particular purpose are disclaimed.
+//In no event shall copyright holders or contributors be liable for any direct,
+//indirect, incidental, special, exemplary, or consequential damages
+//(including, but not limited to, procurement of substitute goods or services;
+//loss of use, data, or profits; or business interruption) however caused
+//and on any theory of liability, whether in contract, strict liability,
+//or tort (including negligence or otherwise) arising in any way out of
+//the use of this software, even if advised of the possibility of such damage.
+
+/*****************************************************************************************************************\
+* The interface contains the main descriptors that will be implemented in the descriptor class *
+\*****************************************************************************************************************/
+
+#include <stdint.h>
+#ifndef _OPENCV_DESCRIPTOR_HPP_
+#define _OPENCV_DESCRIPTOR_HPP_
+#ifdef __cplusplus
+
+namespace cv
+{
+ namespace stereo
+ {
+ //types of supported kernels
+ enum {
+ CV_DENSE_CENSUS, CV_SPARSE_CENSUS,
+ CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM,
+ CV_MEAN_VARIATION, CV_STAR_KERNEL
+ };
+ //!Mean Variation is a robust kernel that compares a pixel
+ //!not just with the center but also with the mean of the window
+ template<int num_images>
+ struct MVKernel
+ {
+ uint8_t *image[num_images];
+ int *integralImage[num_images];
+ int stop;
+ MVKernel(){}
+ MVKernel(uint8_t **images, int **integral)
+ {
+ for(int i = 0; i < num_images; i++)
+ {
+ image[i] = images[i];
+ integralImage[i] = integral[i];
+ }
+ stop = num_images;
+ }
+ void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
+ {
+ (void)w2;
+ for (int i = 0; i < stop; i++)
+ {
+ if (image[i][rrWidth + jj] > image[i][rWidth + j])
+ {
+ c[i] = c[i] + 1;
+ }
+ c[i] = c[i] << 1;
+ if (integralImage[i][rrWidth + jj] > image[i][rWidth + j])
+ {
+ c[i] = c[i] + 1;
+ }
+ c[i] = c[i] << 1;
+ }
+ }
+ };
+ //!Compares pixels from a patch giving high weights to pixels in which
+ //!the intensity is higher. The other pixels receive a lower weight
+ template <int num_images>
+ struct MCTKernel
+ {
+ uint8_t *image[num_images];
+ int t,imageStop;
+ MCTKernel(){}
+ MCTKernel(uint8_t ** images, int threshold)
+ {
+ for(int i = 0; i < num_images; i++)
+ {
+ image[i] = images[i];
+ }
+ imageStop = num_images;
+ t = threshold;
+ }
+ void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
+ {
+ (void)w2;
+ for(int i = 0; i < imageStop; i++)
+ {
+ if (image[i][rrWidth + jj] > image[i][rWidth + j] - t)
+ {
+ c[i] = c[i] << 1;
+ c[i] = c[i] + 1;
+ c[i] = c[i] << 1;
+ c[i] = c[i] + 1;
+ }
+ else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj])
+ {
+ c[i] = c[i] << 2;
+ c[i] = c[i] + 1;
+ }
+ else
+ {
+ c[i] <<= 2;
+ }
+ }
+ }
+ };
+ //!A madified cs census that compares a pixel with the imediat neightbour starting
+ //!from the center
+ template<int num_images>
+ struct ModifiedCsCensus
+ {
+ uint8_t *image[num_images];
+ int n2;
+ int imageStop;
+ ModifiedCsCensus(){}
+ ModifiedCsCensus(uint8_t **images, int ker)
+ {
+ for(int i = 0; i < num_images; i++)
+ image[i] = images[i];
+ imageStop = num_images;
+ n2 = ker;
+ }
+ void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
+ {
+ (void)j;
+ (void)rWidth;
+ for(int i = 0; i < imageStop; i++)
+ {
+ if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))])
+ {
+ c[i] = c[i] + 1;
+ }
+ c[i] = c[i] * 2;
+ }
+ }
+ };
+ //!A kernel in which a pixel is compared with the center of the window
+ template<int num_images>
+ struct CensusKernel
+ {
+ uint8_t *image[num_images];
+ int imageStop;
+ CensusKernel(){}
+ CensusKernel(uint8_t **images)
+ {
+ for(int i = 0; i < num_images; i++)
+ image[i] = images[i];
+ imageStop = num_images;
+ }
+ void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
+ {
+ (void)w2;
+ for(int i = 0; i < imageStop; i++)
+ {
+ ////compare a pixel with the center from the kernel
+ if (image[i][rrWidth + jj] > image[i][rWidth + j])
+ {
+ c[i] += 1;
+ }
+ c[i] <<= 1;
+ }
+ }
+ };
+ //template clas which efficiently combines the descriptors
+ template <int step_start, int step_end, int step_inc,int nr_img, typename Kernel>
+ class CombinedDescriptor:public ParallelLoopBody
+ {
+ private:
+ int width, height,n2;
+ int stride_;
+ int *dst[nr_img];
+ Kernel kernel_;
+ int n2_stop;
+ public:
+ CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop)
+ {
+ width = w;
+ height = h;
+ n2 = k2;
+ stride_ = stride;
+ for(int i = 0; i < nr_img; i++)
+ dst[i] = distance[i];
+ kernel_ = kernel;
+ n2_stop = k2Stop;
+ }
+ void operator()(const cv::Range &r) const {
+ for (int i = r.start; i <= r.end ; i++)
+ {
+ int rWidth = i * stride_;
+ for (int j = n2 + 2; j <= width - n2 - 2; j++)
+ {
+ int c[nr_img];
+ memset(c,0,nr_img);
+ for(int step = step_start; step <= step_end; step += step_inc)
+ {
+ for (int ii = - n2; ii <= + n2_stop; ii += step)
+ {
+ int rrWidth = (ii + i) * stride_;
+ int rrWidthC = (ii + i + n2) * stride_;
+ for (int jj = j - n2; jj <= j + n2; jj += step)
+ {
+ if (ii != i || jj != j)
+ {
+ kernel_(rrWidth,rrWidthC, rWidth, jj, j,c);
+ }
+ }
+ }
+ }
+ for(int l = 0; l < nr_img; l++)
+ dst[l][rWidth + j] = c[l];
+ }
+ }
+ }
+ };
+ //!calculate the mean of every windowSizexWindwoSize block from the integral Image
+ //!this is a preprocessing for MV kernel
+ class MeanKernelIntegralImage : public ParallelLoopBody
+ {
+ private:
+ int *img;
+ int windowSize,width;
+ float scalling;
+ int *c;
+ public:
+ MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost):
+ img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){};
+ void operator()(const cv::Range &r) const{
+ for (int i = r.start; i <= r.end; i++)
+ {
+ int iw = i * width;
+ for (int j = windowSize + 1; j <= width - windowSize - 1; j++)
+ {
+ c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1]
+ - img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling);
+ }
+ }
+ }
+ };
+ //!implementation for the star kernel descriptor
+ template<int num_images>
+ class StarKernelCensus:public ParallelLoopBody
+ {
+ private:
+ uint8_t *image[num_images];
+ int *dst[num_images];
+ int n2, width, height, im_num,stride_;
+ public:
+ StarKernelCensus(const cv::Mat *img, int k2, int **distance)
+ {
+ for(int i = 0; i < num_images; i++)
+ {
+ image[i] = img[i].data;
+ dst[i] = distance[i];
+ }
+ n2 = k2;
+ width = img[0].cols;
+ height = img[0].rows;
+ im_num = num_images;
+ stride_ = (int)img[0].step;
+ }
+ void operator()(const cv::Range &r) const {
+ for (int i = r.start; i <= r.end ; i++)
+ {
+ int rWidth = i * stride_;
+ for (int j = n2; j <= width - n2; j++)
+ {
+ for(int d = 0 ; d < im_num; d++)
+ {
+ int c = 0;
+ for(int step = 4; step > 0; step--)
+ {
+ for (int ii = i - step; ii <= i + step; ii += step)
+ {
+ int rrWidth = ii * stride_;
+ for (int jj = j - step; jj <= j + step; jj += step)
+ {
+ if (image[d][rrWidth + jj] > image[d][rWidth + j])
+ {
+ c = c + 1;
+ }
+ c = c * 2;
+ }
+ }
+ }
+ for (int ii = -1; ii <= +1; ii++)
+ {
+ int rrWidth = (ii + i) * stride_;
+ if (i == -1)
+ {
+ if (ii + i != i)
+ {
+ if (image[d][rrWidth + j] > image[d][rWidth + j])
+ {
+ c = c + 1;
+ }
+ c = c * 2;
+ }
+ }
+ else if (i == 0)
+ {
+ for (int j2 = -1; j2 <= 1; j2 += 2)
+ {
+ if (ii + i != i)
+ {
+ if (image[d][rrWidth + j + j2] > image[d][rWidth + j])
+ {
+ c = c + 1;
+ }
+ c = c * 2;
+ }
+ }
+ }
+ else
+ {
+ if (ii + i != i)
+ {
+ if (image[d][rrWidth + j] > image[d][rWidth + j])
+ {
+ c = c + 1;
+ }
+ c = c * 2;
+ }
+ }
+ }
+ dst[d][rWidth + j] = c;
+ }
+ }
+ }
+ }
+ };
+ //!paralel implementation of the center symetric census
+ template <int num_images>
+ class SymetricCensus:public ParallelLoopBody
+ {
+ private:
+ uint8_t *image[num_images];
+ int *dst[num_images];
+ int n2, width, height, im_num,stride_;
+ public:
+ SymetricCensus(const cv::Mat *img, int k2, int **distance)
+ {
+ for(int i = 0; i < num_images; i++)
+ {
+ image[i] = img[i].data;
+ dst[i] = distance[i];
+ }
+ n2 = k2;
+ width = img[0].cols;
+ height = img[0].rows;
+ im_num = num_images;
+ stride_ = (int)img[0].step;
+ }
+ void operator()(const cv::Range &r) const {
+ for (int i = r.start; i <= r.end ; i++)
+ {
+ int distV = i*stride_;
+ for (int j = n2; j <= width - n2; j++)
+ {
+ for(int d = 0; d < im_num; d++)
+ {
+ int c = 0;
+ //the classic center symetric census which compares the curent pixel with its symetric not its center.
+ for (int ii = -n2; ii <= 0; ii++)
+ {
+ int rrWidth = (ii + i) * stride_;
+ for (int jj = -n2; jj <= +n2; jj++)
+ {
+ if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)])
+ {
+ c = c + 1;
+ }
+ c = c * 2;
+ if(ii == 0 && jj < 0)
+ {
+ if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)])
+ {
+ c = c + 1;
+ }
+ c = c * 2;
+ }
+ }
+ }
+ dst[d][(distV + j)] = c;
+ }
+ }
+ }
+ }
+ };
+ /**
+ Two variations of census applied on input images
+ Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes
+ **/
+ //void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type);
+ CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
+ //single image census transform
+ CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type);
+ /**
+ STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison
+ MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel
+ **/
+ CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1));
+ //single version of modified census transform descriptor
+ CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1));
+ /**The classical center symetric census
+ A modified version of cs census which is comparing a pixel with its correspondent after the center
+ **/
+ CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
+ //single version of census transform
+ CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type);
+ //in a 9x9 kernel only certain positions are choosen
+ CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2);
+ //single image version of star kernel
+ CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist);
+ //integral image computation used in the Mean Variation Census Transform
+ void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c);
+ }
+}
+#endif
+#endif
+/*End of file*/