summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/saliency/saliencySpecializedClasses.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/saliency/saliencySpecializedClasses.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/saliency/saliencySpecializedClasses.hpp493
1 files changed, 493 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/saliency/saliencySpecializedClasses.hpp b/thirdparty/linux/include/opencv2/saliency/saliencySpecializedClasses.hpp
new file mode 100644
index 0000000..2088035
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/saliency/saliencySpecializedClasses.hpp
@@ -0,0 +1,493 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+ //
+ // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ //
+ // By downloading, copying, installing or using the software you agree to this license.
+ // If you do not agree to this license, do not download, install,
+ // copy or use the software.
+ //
+ //
+ // License Agreement
+ // For Open Source Computer Vision Library
+ //
+ // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
+ // Third party copyrights are property of their respective owners.
+ //
+ // Redistribution and use in source and binary forms, with or without modification,
+ // are permitted provided that the following conditions are met:
+ //
+ // * Redistribution's of source code must retain the above copyright notice,
+ // this list of conditions and the following disclaimer.
+ //
+ // * Redistribution's in binary form must reproduce the above copyright notice,
+ // this list of conditions and the following disclaimer in the documentation
+ // and/or other materials provided with the distribution.
+ //
+ // * The name of the copyright holders may not be used to endorse or promote products
+ // derived from this software without specific prior written permission.
+ //
+ // This software is provided by the copyright holders and contributors "as is" and
+ // any express or implied warranties, including, but not limited to, the implied
+ // warranties of merchantability and fitness for a particular purpose are disclaimed.
+ // In no event shall the Intel Corporation or contributors be liable for any direct,
+ // indirect, incidental, special, exemplary, or consequential damages
+ // (including, but not limited to, procurement of substitute goods or services;
+ // loss of use, data, or profits; or business interruption) however caused
+ // and on any theory of liability, whether in contract, strict liability,
+ // or tort (including negligence or otherwise) arising in any way out of
+ // the use of this software, even if advised of the possibility of such damage.
+ //
+ //M*/
+
+#ifndef __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
+#define __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
+
+#include <cstdio>
+#include <string>
+#include <iostream>
+#include <stdint.h>
+#include "saliencyBaseClasses.hpp"
+#include "opencv2/core.hpp"
+
+namespace cv
+{
+namespace saliency
+{
+
+//! @addtogroup saliency
+//! @{
+
+/************************************ Specific Static Saliency Specialized Classes ************************************/
+
+/** @brief the Spectral Residual approach from @cite SR
+
+Starting from the principle of natural image statistics, this method simulate the behavior of
+pre-attentive visual search. The algorithm analyze the log spectrum of each image and obtain the
+spectral residual. Then transform the spectral residual to spatial domain to obtain the saliency
+map, which suggests the positions of proto-objects.
+ */
+class CV_EXPORTS_W StaticSaliencySpectralResidual : public StaticSaliency
+{
+public:
+
+ StaticSaliencySpectralResidual();
+ virtual ~StaticSaliencySpectralResidual();
+
+ CV_WRAP static Ptr<StaticSaliencySpectralResidual> create()
+ {
+ return makePtr<StaticSaliencySpectralResidual>();
+ }
+
+ CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
+ {
+ if( image.empty() )
+ return false;
+
+ return computeSaliencyImpl( image, saliencyMap );
+ }
+
+ CV_WRAP void read( const FileNode& fn );
+ void write( FileStorage& fs ) const;
+
+ CV_WRAP int getImageWidth() const
+ {
+ return resImWidth;
+ }
+ CV_WRAP inline void setImageWidth(int val)
+ {
+ resImWidth = val;
+ }
+ CV_WRAP int getImageHeight() const
+ {
+ return resImHeight;
+ }
+ CV_WRAP void setImageHeight(int val)
+ {
+ resImHeight = val;
+ }
+
+protected:
+ bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
+ CV_PROP_RW int resImWidth;
+ CV_PROP_RW int resImHeight;
+
+};
+
+
+/** @brief the Fine Grained Saliency approach from @cite FGS
+
+This method calculates saliency based on center-surround differences.
+High resolution saliency maps are generated in real time by using integral images.
+ */
+class CV_EXPORTS_W StaticSaliencyFineGrained : public StaticSaliency
+{
+public:
+
+ StaticSaliencyFineGrained();
+
+ CV_WRAP static Ptr<StaticSaliencyFineGrained> create()
+ {
+ return makePtr<StaticSaliencyFineGrained>();
+ }
+
+ CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
+ {
+ if( image.empty() )
+ return false;
+
+ return computeSaliencyImpl( image, saliencyMap );
+ }
+ virtual ~StaticSaliencyFineGrained();
+
+protected:
+ bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
+
+private:
+ void calcIntensityChannel(Mat src, Mat dst);
+ void copyImage(Mat src, Mat dst);
+ void getIntensityScaled(Mat integralImage, Mat gray, Mat saliencyOn, Mat saliencyOff, int neighborhood);
+ float getMean(Mat srcArg, Point2i PixArg, int neighbourhood, int centerVal);
+ void mixScales(Mat *saliencyOn, Mat intensityOn, Mat *saliencyOff, Mat intensityOff, const int numScales);
+ void mixOnOff(Mat intensityOn, Mat intensityOff, Mat intensity);
+ void getIntensity(Mat srcArg, Mat dstArg, Mat dstOnArg, Mat dstOffArg, bool generateOnOff);
+};
+
+
+
+
+/************************************ Specific Motion Saliency Specialized Classes ************************************/
+
+/*!
+ * A Fast Self-tuning Background Subtraction Algorithm.
+ *
+ * This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2]
+ * [2] B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014
+ *
+ */
+/** @brief the Fast Self-tuning Background Subtraction Algorithm from @cite BinWangApr2014
+ */
+class CV_EXPORTS_W MotionSaliencyBinWangApr2014 : public MotionSaliency
+{
+public:
+ MotionSaliencyBinWangApr2014();
+ virtual ~MotionSaliencyBinWangApr2014();
+
+ CV_WRAP static Ptr<MotionSaliencyBinWangApr2014> create()
+ {
+ return makePtr<MotionSaliencyBinWangApr2014>();
+ }
+
+ CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
+ {
+ if( image.empty() )
+ return false;
+
+ return computeSaliencyImpl( image, saliencyMap );
+ }
+
+ /** @brief This is a utility function that allows to set the correct size (taken from the input image) in the
+ corresponding variables that will be used to size the data structures of the algorithm.
+ @param W width of input image
+ @param H height of input image
+ */
+ CV_WRAP void setImagesize( int W, int H );
+ /** @brief This function allows the correct initialization of all data structures that will be used by the
+ algorithm.
+ */
+ CV_WRAP bool init();
+
+ CV_WRAP int getImageWidth() const
+ {
+ return imageWidth;
+ }
+ CV_WRAP inline void setImageWidth(int val)
+ {
+ imageWidth = val;
+ }
+ CV_WRAP int getImageHeight() const
+ {
+ return imageHeight;
+ }
+ CV_WRAP void setImageHeight(int val)
+ {
+ imageHeight = val;
+ }
+
+protected:
+ /** @brief Performs all the operations and calls all internal functions necessary for the accomplishment of the
+ Fast Self-tuning Background Subtraction Algorithm algorithm.
+ @param image input image. According to the needs of this specialized algorithm, the param image is a
+ single *Mat*.
+ @param saliencyMap Saliency Map. Is a binarized map that, in accordance with the nature of the algorithm, highlights the moving objects or areas of change in the scene.
+ The saliency map is given by a single *Mat* (one for each frame of an hypothetical video
+ stream).
+ */
+ bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
+
+private:
+
+ // classification (and adaptation) functions
+ bool fullResolutionDetection( const Mat& image, Mat& highResBFMask );
+ bool lowResolutionDetection( const Mat& image, Mat& lowResBFMask );
+
+ // Background model maintenance functions
+ bool templateOrdering();
+ bool templateReplacement( const Mat& finalBFMask, const Mat& image );
+
+ // changing structure
+ std::vector<Ptr<Mat> > backgroundModel;// The vector represents the background template T0---TK of reference paper.
+ // Matrices are two-channel matrix. In the first layer there are the B (background value)
+ // for each pixel. In the second layer, there are the C (efficacy) value for each pixel
+ Mat potentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
+ // and in the secon level there are the Ca value, the counter for each potential value.
+ Mat epslonPixelsValue; // epslon threshold
+
+ //fixed parameter
+ bool neighborhoodCheck;
+ int N_DS;// Number of template to be downsampled and used in lowResolutionDetection function
+ CV_PROP_RW int imageWidth;// Width of input image
+ CV_PROP_RW int imageHeight;//Height of input image
+ int K;// Number of background model template
+ int N;// NxN is the size of the block for downsampling in the lowlowResolutionDetection
+ float alpha;// Learning rate
+ int L0, L1;// Upper-bound values for C0 and C1 (efficacy of the first two template (matrices) of backgroundModel
+ int thetaL;// T0, T1 swap threshold
+ int thetaA;// Potential background value threshold
+ int gamma;// Parameter that controls the time that the newly updated long-term background value will remain in the
+ // long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
+ //restrain the generation of ghosts.
+
+};
+
+/************************************ Specific Objectness Specialized Classes ************************************/
+
+/**
+ * \brief Objectness algorithms based on [3]
+ * [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
+ */
+
+/** @brief the Binarized normed gradients algorithm from @cite BING
+ */
+class CV_EXPORTS_W ObjectnessBING : public Objectness
+{
+public:
+
+ ObjectnessBING();
+ virtual ~ObjectnessBING();
+
+ CV_WRAP static Ptr<ObjectnessBING> create()
+ {
+ return makePtr<ObjectnessBING>();
+ }
+
+ CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
+ {
+ if( image.empty() )
+ return false;
+
+ return computeSaliencyImpl( image, saliencyMap );
+ }
+
+ CV_WRAP void read();
+ CV_WRAP void write() const;
+
+ /** @brief Return the list of the rectangles' objectness value,
+
+ in the same order as the *vector\<Vec4i\> objectnessBoundingBox* returned by the algorithm (in
+ computeSaliencyImpl function). The bigger value these scores are, it is more likely to be an
+ object window.
+ */
+ std::vector<float> getobjectnessValues();
+
+ /** @brief This is a utility function that allows to set the correct path from which the algorithm will load
+ the trained model.
+ @param trainingPath trained model path
+ */
+ CV_WRAP void setTrainingPath( const String& trainingPath );
+
+ /** @brief This is a utility function that allows to set an arbitrary path in which the algorithm will save the
+ optional results
+
+ (ie writing on file the total number and the list of rectangles returned by objectess, one for
+ each row).
+ @param resultsDir results' folder path
+ */
+ CV_WRAP void setBBResDir( const String& resultsDir );
+
+ CV_WRAP double getBase() const
+ {
+ return _base;
+ }
+ CV_WRAP inline void setBase(double val)
+ {
+ _base = val;
+ }
+ CV_WRAP int getNSS() const
+ {
+ return _NSS;
+ }
+ CV_WRAP void setNSS(int val)
+ {
+ _NSS = val;
+ }
+ CV_WRAP int getW() const
+ {
+ return _W;
+ }
+ CV_WRAP void setW(int val)
+ {
+ _W = val;
+ }
+
+protected:
+ /** @brief Performs all the operations and calls all internal functions necessary for the
+ accomplishment of the Binarized normed gradients algorithm.
+
+ @param image input image. According to the needs of this specialized algorithm, the param image is a
+ single *Mat*
+ @param objectnessBoundingBox objectness Bounding Box vector. According to the result given by this
+ specialized algorithm, the objectnessBoundingBox is a *vector\<Vec4i\>*. Each bounding box is
+ represented by a *Vec4i* for (minX, minY, maxX, maxY).
+ */
+ bool computeSaliencyImpl( InputArray image, OutputArray objectnessBoundingBox );
+
+private:
+
+ class FilterTIG
+ {
+ public:
+ void update( Mat &w );
+
+ // For a W by H gradient magnitude map, find a W-7 by H-7 CV_32F matching score map
+ Mat matchTemplate( const Mat &mag1u );
+
+ float dot( int64_t tig1, int64_t tig2, int64_t tig4, int64_t tig8 );
+ void reconstruct( Mat &w );// For illustration purpose
+
+ private:
+ static const int NUM_COMP = 2;// Number of components
+ static const int D = 64;// Dimension of TIG
+ int64_t _bTIGs[NUM_COMP];// Binary TIG features
+ float _coeffs1[NUM_COMP];// Coefficients of binary TIG features
+
+ // For efficiently deals with different bits in CV_8U gradient map
+ float _coeffs2[NUM_COMP], _coeffs4[NUM_COMP], _coeffs8[NUM_COMP];
+ };
+
+ template<typename VT, typename ST>
+ struct ValStructVec
+ {
+ ValStructVec();
+ int size() const;
+ void clear();
+ void reserve( int resSz );
+ void pushBack( const VT& val, const ST& structVal );
+ const VT& operator ()( int i ) const;
+ const ST& operator []( int i ) const;
+ VT& operator ()( int i );
+ ST& operator []( int i );
+
+ void sort( bool descendOrder = true );
+ const std::vector<ST> &getSortedStructVal();
+ std::vector<std::pair<VT, int> > getvalIdxes();
+ void append( const ValStructVec<VT, ST> &newVals, int startV = 0 );
+
+ std::vector<ST> structVals; // struct values
+ int sz;// size of the value struct vector
+ std::vector<std::pair<VT, int> > valIdxes;// Indexes after sort
+ bool smaller()
+ {
+ return true;
+ }
+ std::vector<ST> sortedStructVals;
+ };
+
+ enum
+ {
+ MAXBGR,
+ HSV,
+ G
+ };
+
+ double _base, _logBase; // base for window size quantization
+ int _W;// As described in the paper: #Size, Size(_W, _H) of feature window.
+ int _NSS;// Size for non-maximal suppress
+ int _maxT, _minT, _numT;// The minimal and maximal dimensions of the template
+
+ int _Clr;//
+ static const char* _clrName[3];
+
+ // Names and paths to read model and to store results
+ std::string _modelName, _bbResDir, _trainingPath, _resultsDir;
+
+ std::vector<int> _svmSzIdxs;// Indexes of active size. It's equal to _svmFilters.size() and _svmReW1f.rows
+ Mat _svmFilter;// Filters learned at stage I, each is a _H by _W CV_32F matrix
+ FilterTIG _tigF;// TIG filter
+ Mat _svmReW1f;// Re-weight parameters learned at stage II.
+
+ // List of the rectangles' objectness value, in the same order as
+ // the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function)
+ std::vector<float> objectnessValues;
+
+private:
+ // functions
+
+ inline static float LoG( float x, float y, float delta )
+ {
+ float d = - ( x * x + y * y ) / ( 2 * delta * delta );
+ return -1.0f / ( (float) ( CV_PI ) * pow( delta, 4 ) ) * ( 1 + d ) * exp( d );
+ } // Laplacian of Gaussian
+
+ // Read matrix from binary file
+ static bool matRead( const std::string& filename, Mat& M );
+
+ void setColorSpace( int clr = MAXBGR );
+
+ // Load trained model.
+ int loadTrainedModel( std::string modelName = "" );// Return -1, 0, or 1 if partial, none, or all loaded
+
+ // Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY).
+ // The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII().
+ // Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio)
+ void getObjBndBoxes( Mat &img3u, ValStructVec<float, Vec4i> &valBoxes, int numDetPerSize = 120 );
+ void getObjBndBoxesForSingleImage( Mat img, ValStructVec<float, Vec4i> &boxes, int numDetPerSize );
+
+ bool filtersLoaded()
+ {
+ int n = (int) _svmSzIdxs.size();
+ return n > 0 && _svmReW1f.size() == Size( 2, n ) && _svmFilter.size() == Size( _W, _W );
+ }
+ void predictBBoxSI( Mat &mag3u, ValStructVec<float, Vec4i> &valBoxes, std::vector<int> &sz, int NUM_WIN_PSZ = 100, bool fast = true );
+ void predictBBoxSII( ValStructVec<float, Vec4i> &valBoxes, const std::vector<int> &sz );
+
+ // Calculate the image gradient: center option as in VLFeat
+ void gradientMag( Mat &imgBGR3u, Mat &mag1u );
+
+ static void gradientRGB( Mat &bgr3u, Mat &mag1u );
+ static void gradientGray( Mat &bgr3u, Mat &mag1u );
+ static void gradientHSV( Mat &bgr3u, Mat &mag1u );
+ static void gradientXY( Mat &x1i, Mat &y1i, Mat &mag1u );
+
+ static inline int bgrMaxDist( const Vec3b &u, const Vec3b &v )
+ {
+ int b = abs( u[0] - v[0] ), g = abs( u[1] - v[1] ), r = abs( u[2] - v[2] );
+ b = max( b, g );
+ return max( b, r );
+ }
+ static inline int vecDist3b( const Vec3b &u, const Vec3b &v )
+ {
+ return abs( u[0] - v[0] ) + abs( u[1] - v[1] ) + abs( u[2] - v[2] );
+ }
+
+ //Non-maximal suppress
+ static void nonMaxSup( Mat &matchCost1f, ValStructVec<float, Point> &matchCost, int NSS = 1, int maxPoint = 50, bool fast = true );
+
+};
+
+//! @}
+
+}
+/* namespace saliency */
+} /* namespace cv */
+
+#endif