summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/photo.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/photo.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/photo.hpp870
1 files changed, 870 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/photo.hpp b/thirdparty/linux/include/opencv2/photo.hpp
new file mode 100644
index 0000000..a445dd3
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/photo.hpp
@@ -0,0 +1,870 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_PHOTO_HPP
+#define OPENCV_PHOTO_HPP
+
+#include "opencv2/core.hpp"
+#include "opencv2/imgproc.hpp"
+
+/**
+@defgroup photo Computational Photography
+@{
+ @defgroup photo_denoise Denoising
+ @defgroup photo_hdr HDR imaging
+
+This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment,
+camera calibration with multiple exposures and exposure fusion.
+
+ @defgroup photo_clone Seamless Cloning
+ @defgroup photo_render Non-Photorealistic Rendering
+ @defgroup photo_c C API
+@}
+ */
+
+namespace cv
+{
+
+//! @addtogroup photo
+//! @{
+
+//! the inpainting algorithm
+enum
+{
+ INPAINT_NS = 0, // Navier-Stokes algorithm
+ INPAINT_TELEA = 1 // A. Telea algorithm
+};
+
+enum
+{
+ NORMAL_CLONE = 1,
+ MIXED_CLONE = 2,
+ MONOCHROME_TRANSFER = 3
+};
+
+enum
+{
+ RECURS_FILTER = 1,
+ NORMCONV_FILTER = 2
+};
+
+/** @brief Restores the selected region in an image using the region neighborhood.
+
+@param src Input 8-bit 1-channel or 3-channel image.
+@param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
+needs to be inpainted.
+@param dst Output image with the same size and type as src .
+@param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered
+by the algorithm.
+@param flags Inpainting method that could be one of the following:
+- **INPAINT_NS** Navier-Stokes based method [Navier01]
+- **INPAINT_TELEA** Method by Alexandru Telea @cite Telea04 .
+
+The function reconstructs the selected image area from the pixel near the area boundary. The
+function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
+objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
+
+@note
+ - An example using the inpainting technique can be found at
+ opencv_source_code/samples/cpp/inpaint.cpp
+ - (Python) An example using the inpainting technique can be found at
+ opencv_source_code/samples/python/inpaint.py
+ */
+CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask,
+ OutputArray dst, double inpaintRadius, int flags );
+
+//! @addtogroup photo_denoise
+//! @{
+
+/** @brief Perform image denoising using Non-local Means Denoising algorithm
+<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
+optimizations. Noise expected to be a gaussian white noise
+
+@param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
+@param dst Output image with the same size and type as src .
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Parameter regulating filter strength. Big h value perfectly removes noise but also
+removes image details, smaller h value preserves details but also preserves some noise
+
+This function expected to be applied to grayscale images. For colored images look at
+fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
+image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
+image to CIELAB colorspace and then separately denoise L and AB components with different h
+parameter.
+ */
+CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3,
+ int templateWindowSize = 7, int searchWindowSize = 21);
+
+/** @brief Perform image denoising using Non-local Means Denoising algorithm
+<http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
+optimizations. Noise expected to be a gaussian white noise
+
+@param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
+2-channel, 3-channel or 4-channel image.
+@param dst Output image with the same size and type as src .
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Array of parameters regulating filter strength, either one
+parameter applied to all channels or one per channel in dst. Big h value
+perfectly removes noise but also removes image details, smaller h
+value preserves details but also preserves some noise
+@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
+
+This function expected to be applied to grayscale images. For colored images look at
+fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
+image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
+image to CIELAB colorspace and then separately denoise L and AB components with different h
+parameter.
+ */
+CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst,
+ const std::vector<float>& h,
+ int templateWindowSize = 7, int searchWindowSize = 21,
+ int normType = NORM_L2);
+
+/** @brief Modification of fastNlMeansDenoising function for colored images
+
+@param src Input 8-bit 3-channel image.
+@param dst Output image with the same size and type as src .
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
+removes noise but also removes image details, smaller h value preserves details but also preserves
+some noise
+@param hColor The same as h but for color components. For most images value equals 10
+will be enough to remove colored noise and do not distort colors
+
+The function converts image to CIELAB colorspace and then separately denoise L and AB components
+with given h parameters using fastNlMeansDenoising function.
+ */
+CV_EXPORTS_W void fastNlMeansDenoisingColored( InputArray src, OutputArray dst,
+ float h = 3, float hColor = 3,
+ int templateWindowSize = 7, int searchWindowSize = 21);
+
+/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
+captured in small period of time. For example video. This version of the function is for grayscale
+images or for manual manipulation with colorspaces. For more details see
+<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
+
+@param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
+4-channel images sequence. All images should have the same type and
+size.
+@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
+@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
+be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
+imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
+srcImgs[imgToDenoiseIndex] image.
+@param dst Output image with the same size and type as srcImgs images.
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Parameter regulating filter strength. Bigger h value
+perfectly removes noise but also removes image details, smaller h
+value preserves details but also preserves some noise
+ */
+CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
+
+/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
+captured in small period of time. For example video. This version of the function is for grayscale
+images or for manual manipulation with colorspaces. For more details see
+<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
+
+@param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
+2-channel, 3-channel or 4-channel images sequence. All images should
+have the same type and size.
+@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
+@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
+be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
+imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
+srcImgs[imgToDenoiseIndex] image.
+@param dst Output image with the same size and type as srcImgs images.
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Array of parameters regulating filter strength, either one
+parameter applied to all channels or one per channel in dst. Big h value
+perfectly removes noise but also removes image details, smaller h
+value preserves details but also preserves some noise
+@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
+ */
+CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ const std::vector<float>& h,
+ int templateWindowSize = 7, int searchWindowSize = 21,
+ int normType = NORM_L2);
+
+/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
+
+@param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
+size.
+@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
+@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
+be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
+imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
+srcImgs[imgToDenoiseIndex] image.
+@param dst Output image with the same size and type as srcImgs images.
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
+removes noise but also removes image details, smaller h value preserves details but also preserves
+some noise.
+@param hColor The same as h but for color components.
+
+The function converts images to CIELAB colorspace and then separately denoise L and AB components
+with given h parameters using fastNlMeansDenoisingMulti function.
+ */
+CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs, OutputArray dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ float h = 3, float hColor = 3,
+ int templateWindowSize = 7, int searchWindowSize = 21);
+
+/** @brief Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
+finding a function to minimize some functional). As the image denoising, in particular, may be seen
+as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
+exactly what is implemented.
+
+It should be noted, that this implementation was taken from the July 2013 blog entry
+@cite MA13 , which also contained (slightly more general) ready-to-use source code on Python.
+Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
+of July 2013 and finally it was slightly adapted by later authors.
+
+Although the thorough discussion and justification of the algorithm involved may be found in
+@cite ChambolleEtAl, it might make sense to skim over it here, following @cite MA13 . To begin
+with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
+pixels (it may be seen as set
+\f$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\f$ for some
+\f$m,\;n\in\mathbb{N}\f$) into \f$\{0,1,\dots,255\}\f$. We shall denote the noised images as \f$f_i\f$ and with
+this view, given some image \f$x\f$ of the same size, we may measure how bad it is by the formula
+
+\f[\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\f]
+
+\f$\|\|\cdot\|\|\f$ here denotes \f$L_2\f$-norm and as you see, the first addend states that we want our
+image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
+we want our result to be close to the observations we've got. If we treat \f$x\f$ as a function, this is
+exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
+
+@param observations This array should contain one or more noised versions of the image that is to
+be restored.
+@param result Here the denoised image will be stored. There is no need to do pre-allocation of
+storage space, as it will be automatically allocated, if necessary.
+@param lambda Corresponds to \f$\lambda\f$ in the formulas above. As it is enlarged, the smooth
+(blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
+speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
+removed.
+@param niters Number of iterations that the algorithm will run. Of course, as more iterations as
+better, but it is hard to quantitatively refine this statement, so just use the default and
+increase it if the results are poor.
+ */
+CV_EXPORTS_W void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda=1.0, int niters=30);
+
+//! @} photo_denoise
+
+//! @addtogroup photo_hdr
+//! @{
+
+enum { LDR_SIZE = 256 };
+
+/** @brief Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range.
+ */
+class CV_EXPORTS_W Tonemap : public Algorithm
+{
+public:
+ /** @brief Tonemaps image
+
+ @param src source image - 32-bit 3-channel Mat
+ @param dst destination image - 32-bit 3-channel Mat with values in [0, 1] range
+ */
+ CV_WRAP virtual void process(InputArray src, OutputArray dst) = 0;
+
+ CV_WRAP virtual float getGamma() const = 0;
+ CV_WRAP virtual void setGamma(float gamma) = 0;
+};
+
+/** @brief Creates simple linear mapper with gamma correction
+
+@param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
+equal to 2.2f is suitable for most displays.
+Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
+ */
+CV_EXPORTS_W Ptr<Tonemap> createTonemap(float gamma = 1.0f);
+
+/** @brief Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in
+logarithmic domain.
+
+Since it's a global operator the same function is applied to all the pixels, it is controlled by the
+bias parameter.
+
+Optional saturation enhancement is possible as described in @cite FL02 .
+
+For more information see @cite DM03 .
+ */
+class CV_EXPORTS_W TonemapDrago : public Tonemap
+{
+public:
+
+ CV_WRAP virtual float getSaturation() const = 0;
+ CV_WRAP virtual void setSaturation(float saturation) = 0;
+
+ CV_WRAP virtual float getBias() const = 0;
+ CV_WRAP virtual void setBias(float bias) = 0;
+};
+
+/** @brief Creates TonemapDrago object
+
+@param gamma gamma value for gamma correction. See createTonemap
+@param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater
+than 1 increase saturation and values less than 1 decrease it.
+@param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
+results, default value is 0.85.
+ */
+CV_EXPORTS_W Ptr<TonemapDrago> createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f);
+
+/** @brief This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter
+and compresses contrast of the base layer thus preserving all the details.
+
+This implementation uses regular bilateral filter from opencv.
+
+Saturation enhancement is possible as in ocvTonemapDrago.
+
+For more information see @cite DD02 .
+ */
+class CV_EXPORTS_W TonemapDurand : public Tonemap
+{
+public:
+
+ CV_WRAP virtual float getSaturation() const = 0;
+ CV_WRAP virtual void setSaturation(float saturation) = 0;
+
+ CV_WRAP virtual float getContrast() const = 0;
+ CV_WRAP virtual void setContrast(float contrast) = 0;
+
+ CV_WRAP virtual float getSigmaSpace() const = 0;
+ CV_WRAP virtual void setSigmaSpace(float sigma_space) = 0;
+
+ CV_WRAP virtual float getSigmaColor() const = 0;
+ CV_WRAP virtual void setSigmaColor(float sigma_color) = 0;
+};
+
+/** @brief Creates TonemapDurand object
+
+@param gamma gamma value for gamma correction. See createTonemap
+@param contrast resulting contrast on logarithmic scale, i. e. log(max / min), where max and min
+are maximum and minimum luminance values of the resulting image.
+@param saturation saturation enhancement value. See createTonemapDrago
+@param sigma_space bilateral filter sigma in color space
+@param sigma_color bilateral filter sigma in coordinate space
+ */
+CV_EXPORTS_W Ptr<TonemapDurand>
+createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f);
+
+/** @brief This is a global tonemapping operator that models human visual system.
+
+Mapping function is controlled by adaptation parameter, that is computed using light adaptation and
+color adaptation.
+
+For more information see @cite RD05 .
+ */
+class CV_EXPORTS_W TonemapReinhard : public Tonemap
+{
+public:
+ CV_WRAP virtual float getIntensity() const = 0;
+ CV_WRAP virtual void setIntensity(float intensity) = 0;
+
+ CV_WRAP virtual float getLightAdaptation() const = 0;
+ CV_WRAP virtual void setLightAdaptation(float light_adapt) = 0;
+
+ CV_WRAP virtual float getColorAdaptation() const = 0;
+ CV_WRAP virtual void setColorAdaptation(float color_adapt) = 0;
+};
+
+/** @brief Creates TonemapReinhard object
+
+@param gamma gamma value for gamma correction. See createTonemap
+@param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
+@param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
+value, if 0 it's global, otherwise it's a weighted mean of this two cases.
+@param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
+if 0 adaptation level is the same for each channel.
+ */
+CV_EXPORTS_W Ptr<TonemapReinhard>
+createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f);
+
+/** @brief This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid,
+transforms contrast values to HVS response and scales the response. After this the image is
+reconstructed from new contrast values.
+
+For more information see @cite MM06 .
+ */
+class CV_EXPORTS_W TonemapMantiuk : public Tonemap
+{
+public:
+ CV_WRAP virtual float getScale() const = 0;
+ CV_WRAP virtual void setScale(float scale) = 0;
+
+ CV_WRAP virtual float getSaturation() const = 0;
+ CV_WRAP virtual void setSaturation(float saturation) = 0;
+};
+
+/** @brief Creates TonemapMantiuk object
+
+@param gamma gamma value for gamma correction. See createTonemap
+@param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing
+dynamic range. Values from 0.6 to 0.9 produce best results.
+@param saturation saturation enhancement value. See createTonemapDrago
+ */
+CV_EXPORTS_W Ptr<TonemapMantiuk>
+createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f);
+
+/** @brief The base class for algorithms that align images of the same scene with different exposures
+ */
+class CV_EXPORTS_W AlignExposures : public Algorithm
+{
+public:
+ /** @brief Aligns images
+
+ @param src vector of input images
+ @param dst vector of aligned images
+ @param times vector of exposure time values for each image
+ @param response 256x1 matrix with inverse camera response function for each pixel value, it should
+ have the same number of channels as images.
+ */
+ CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst,
+ InputArray times, InputArray response) = 0;
+};
+
+/** @brief This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median
+luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations.
+
+It is invariant to exposure, so exposure values and camera response are not necessary.
+
+In this implementation new image regions are filled with zeros.
+
+For more information see @cite GW03 .
+ */
+class CV_EXPORTS_W AlignMTB : public AlignExposures
+{
+public:
+ CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst,
+ InputArray times, InputArray response) = 0;
+
+ /** @brief Short version of process, that doesn't take extra arguments.
+
+ @param src vector of input images
+ @param dst vector of aligned images
+ */
+ CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst) = 0;
+
+ /** @brief Calculates shift between two images, i. e. how to shift the second image to correspond it with the
+ first.
+
+ @param img0 first image
+ @param img1 second image
+ */
+ CV_WRAP virtual Point calculateShift(InputArray img0, InputArray img1) = 0;
+ /** @brief Helper function, that shift Mat filling new regions with zeros.
+
+ @param src input image
+ @param dst result image
+ @param shift shift value
+ */
+ CV_WRAP virtual void shiftMat(InputArray src, OutputArray dst, const Point shift) = 0;
+ /** @brief Computes median threshold and exclude bitmaps of given image.
+
+ @param img input image
+ @param tb median threshold bitmap
+ @param eb exclude bitmap
+ */
+ CV_WRAP virtual void computeBitmaps(InputArray img, OutputArray tb, OutputArray eb) = 0;
+
+ CV_WRAP virtual int getMaxBits() const = 0;
+ CV_WRAP virtual void setMaxBits(int max_bits) = 0;
+
+ CV_WRAP virtual int getExcludeRange() const = 0;
+ CV_WRAP virtual void setExcludeRange(int exclude_range) = 0;
+
+ CV_WRAP virtual bool getCut() const = 0;
+ CV_WRAP virtual void setCut(bool value) = 0;
+};
+
+/** @brief Creates AlignMTB object
+
+@param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
+usually good enough (31 and 63 pixels shift respectively).
+@param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
+median value.
+@param cut if true cuts images, otherwise fills the new regions with zeros.
+ */
+CV_EXPORTS_W Ptr<AlignMTB> createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true);
+
+/** @brief The base class for camera response calibration algorithms.
+ */
+class CV_EXPORTS_W CalibrateCRF : public Algorithm
+{
+public:
+ /** @brief Recovers inverse camera response.
+
+ @param src vector of input images
+ @param dst 256x1 matrix with inverse camera response function
+ @param times vector of exposure time values for each image
+ */
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
+};
+
+/** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective
+function as linear system. Objective function is constructed using pixel values on the same position
+in all images, extra term is added to make the result smoother.
+
+For more information see @cite DM97 .
+ */
+class CV_EXPORTS_W CalibrateDebevec : public CalibrateCRF
+{
+public:
+ CV_WRAP virtual float getLambda() const = 0;
+ CV_WRAP virtual void setLambda(float lambda) = 0;
+
+ CV_WRAP virtual int getSamples() const = 0;
+ CV_WRAP virtual void setSamples(int samples) = 0;
+
+ CV_WRAP virtual bool getRandom() const = 0;
+ CV_WRAP virtual void setRandom(bool random) = 0;
+};
+
+/** @brief Creates CalibrateDebevec object
+
+@param samples number of pixel locations to use
+@param lambda smoothness term weight. Greater values produce smoother results, but can alter the
+response.
+@param random if true sample pixel locations are chosen at random, otherwise the form a
+rectangular grid.
+ */
+CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false);
+
+/** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective
+function as linear system. This algorithm uses all image pixels.
+
+For more information see @cite RB99 .
+ */
+class CV_EXPORTS_W CalibrateRobertson : public CalibrateCRF
+{
+public:
+ CV_WRAP virtual int getMaxIter() const = 0;
+ CV_WRAP virtual void setMaxIter(int max_iter) = 0;
+
+ CV_WRAP virtual float getThreshold() const = 0;
+ CV_WRAP virtual void setThreshold(float threshold) = 0;
+
+ CV_WRAP virtual Mat getRadiance() const = 0;
+};
+
+/** @brief Creates CalibrateRobertson object
+
+@param max_iter maximal number of Gauss-Seidel solver iterations.
+@param threshold target difference between results of two successive steps of the minimization.
+ */
+CV_EXPORTS_W Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f);
+
+/** @brief The base class algorithms that can merge exposure sequence to a single image.
+ */
+class CV_EXPORTS_W MergeExposures : public Algorithm
+{
+public:
+ /** @brief Merges images.
+
+ @param src vector of input images
+ @param dst result image
+ @param times vector of exposure time values for each image
+ @param response 256x1 matrix with inverse camera response function for each pixel value, it should
+ have the same number of channels as images.
+ */
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
+ InputArray times, InputArray response) = 0;
+};
+
+/** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure
+values and camera response.
+
+For more information see @cite DM97 .
+ */
+class CV_EXPORTS_W MergeDebevec : public MergeExposures
+{
+public:
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
+ InputArray times, InputArray response) = 0;
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
+};
+
+/** @brief Creates MergeDebevec object
+ */
+CV_EXPORTS_W Ptr<MergeDebevec> createMergeDebevec();
+
+/** @brief Pixels are weighted using contrast, saturation and well-exposedness measures, than images are
+combined using laplacian pyramids.
+
+The resulting image weight is constructed as weighted average of contrast, saturation and
+well-exposedness measures.
+
+The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying
+by 255, but it's recommended to apply gamma correction and/or linear tonemapping.
+
+For more information see @cite MK07 .
+ */
+class CV_EXPORTS_W MergeMertens : public MergeExposures
+{
+public:
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
+ InputArray times, InputArray response) = 0;
+ /** @brief Short version of process, that doesn't take extra arguments.
+
+ @param src vector of input images
+ @param dst result image
+ */
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0;
+
+ CV_WRAP virtual float getContrastWeight() const = 0;
+ CV_WRAP virtual void setContrastWeight(float contrast_weiht) = 0;
+
+ CV_WRAP virtual float getSaturationWeight() const = 0;
+ CV_WRAP virtual void setSaturationWeight(float saturation_weight) = 0;
+
+ CV_WRAP virtual float getExposureWeight() const = 0;
+ CV_WRAP virtual void setExposureWeight(float exposure_weight) = 0;
+};
+
+/** @brief Creates MergeMertens object
+
+@param contrast_weight contrast measure weight. See MergeMertens.
+@param saturation_weight saturation measure weight
+@param exposure_weight well-exposedness measure weight
+ */
+CV_EXPORTS_W Ptr<MergeMertens>
+createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f);
+
+/** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure
+values and camera response.
+
+For more information see @cite RB99 .
+ */
+class CV_EXPORTS_W MergeRobertson : public MergeExposures
+{
+public:
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
+ InputArray times, InputArray response) = 0;
+ CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
+};
+
+/** @brief Creates MergeRobertson object
+ */
+CV_EXPORTS_W Ptr<MergeRobertson> createMergeRobertson();
+
+//! @} photo_hdr
+
+/** @brief Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
+black-and-white photograph rendering, and in many single channel image processing applications
+@cite CL12 .
+
+@param src Input 8-bit 3-channel image.
+@param grayscale Output 8-bit 1-channel image.
+@param color_boost Output 8-bit 3-channel image.
+
+This function is to be applied on color images.
+ */
+CV_EXPORTS_W void decolor( InputArray src, OutputArray grayscale, OutputArray color_boost);
+
+//! @addtogroup photo_clone
+//! @{
+
+/** @brief Image editing tasks concern either global changes (color/intensity corrections, filters,
+deformations) or local changes concerned to a selection. Here we are interested in achieving local
+changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
+manner. The extent of the changes ranges from slight distortions to complete replacement by novel
+content @cite PM03 .
+
+@param src Input 8-bit 3-channel image.
+@param dst Input 8-bit 3-channel image.
+@param mask Input 8-bit 1 or 3-channel image.
+@param p Point in dst image where object is placed.
+@param blend Output image with the same size and type as dst.
+@param flags Cloning method that could be one of the following:
+- **NORMAL_CLONE** The power of the method is fully expressed when inserting objects with
+complex outlines into a new background
+- **MIXED_CLONE** The classic method, color-based selection and alpha masking might be time
+consuming and often leaves an undesirable halo. Seamless cloning, even averaged with the
+original image, is not effective. Mixed seamless cloning based on a loose selection proves
+effective.
+- **FEATURE_EXCHANGE** Feature exchange allows the user to easily replace certain features of
+one object by alternative features.
+ */
+CV_EXPORTS_W void seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p,
+ OutputArray blend, int flags);
+
+/** @brief Given an original color image, two differently colored versions of this image can be mixed
+seamlessly.
+
+@param src Input 8-bit 3-channel image.
+@param mask Input 8-bit 1 or 3-channel image.
+@param dst Output image with the same size and type as src .
+@param red_mul R-channel multiply factor.
+@param green_mul G-channel multiply factor.
+@param blue_mul B-channel multiply factor.
+
+Multiplication factor is between .5 to 2.5.
+ */
+CV_EXPORTS_W void colorChange(InputArray src, InputArray mask, OutputArray dst, float red_mul = 1.0f,
+ float green_mul = 1.0f, float blue_mul = 1.0f);
+
+/** @brief Applying an appropriate non-linear transformation to the gradient field inside the selection and
+then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
+
+@param src Input 8-bit 3-channel image.
+@param mask Input 8-bit 1 or 3-channel image.
+@param dst Output image with the same size and type as src.
+@param alpha Value ranges between 0-2.
+@param beta Value ranges between 0-2.
+
+This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
+ */
+CV_EXPORTS_W void illuminationChange(InputArray src, InputArray mask, OutputArray dst,
+ float alpha = 0.2f, float beta = 0.4f);
+
+/** @brief By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
+washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge
+Detector is used.
+
+@param src Input 8-bit 3-channel image.
+@param mask Input 8-bit 1 or 3-channel image.
+@param dst Output image with the same size and type as src.
+@param low_threshold Range from 0 to 100.
+@param high_threshold Value \> 100.
+@param kernel_size The size of the Sobel kernel to be used.
+
+**NOTE:**
+
+The algorithm assumes that the color of the source image is close to that of the destination. This
+assumption means that when the colors don't match, the source image color gets tinted toward the
+color of the destination image.
+ */
+CV_EXPORTS_W void textureFlattening(InputArray src, InputArray mask, OutputArray dst,
+ float low_threshold = 30, float high_threshold = 45,
+ int kernel_size = 3);
+
+//! @} photo_clone
+
+//! @addtogroup photo_render
+//! @{
+
+/** @brief Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
+filters are used in many different applications @cite EM11 .
+
+@param src Input 8-bit 3-channel image.
+@param dst Output 8-bit 3-channel image.
+@param flags Edge preserving filters:
+- **RECURS_FILTER** = 1
+- **NORMCONV_FILTER** = 2
+@param sigma_s Range between 0 to 200.
+@param sigma_r Range between 0 to 1.
+ */
+CV_EXPORTS_W void edgePreservingFilter(InputArray src, OutputArray dst, int flags = 1,
+ float sigma_s = 60, float sigma_r = 0.4f);
+
+/** @brief This filter enhances the details of a particular image.
+
+@param src Input 8-bit 3-channel image.
+@param dst Output image with the same size and type as src.
+@param sigma_s Range between 0 to 200.
+@param sigma_r Range between 0 to 1.
+ */
+CV_EXPORTS_W void detailEnhance(InputArray src, OutputArray dst, float sigma_s = 10,
+ float sigma_r = 0.15f);
+
+/** @brief Pencil-like non-photorealistic line drawing
+
+@param src Input 8-bit 3-channel image.
+@param dst1 Output 8-bit 1-channel image.
+@param dst2 Output image with the same size and type as src.
+@param sigma_s Range between 0 to 200.
+@param sigma_r Range between 0 to 1.
+@param shade_factor Range between 0 to 0.1.
+ */
+CV_EXPORTS_W void pencilSketch(InputArray src, OutputArray dst1, OutputArray dst2,
+ float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f);
+
+/** @brief Stylization aims to produce digital imagery with a wide variety of effects not focused on
+photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
+contrast while preserving, or enhancing, high-contrast features.
+
+@param src Input 8-bit 3-channel image.
+@param dst Output image with the same size and type as src.
+@param sigma_s Range between 0 to 200.
+@param sigma_r Range between 0 to 1.
+ */
+CV_EXPORTS_W void stylization(InputArray src, OutputArray dst, float sigma_s = 60,
+ float sigma_r = 0.45f);
+
+//! @} photo_render
+
+//! @} photo
+
+} // cv
+
+#ifndef DISABLE_OPENCV_24_COMPATIBILITY
+#include "opencv2/photo/photo_c.h"
+#endif
+
+#endif