diff options
Diffstat (limited to 'thirdparty/linux/include/opencv2/features2d.hpp')
-rw-r--r-- | thirdparty/linux/include/opencv2/features2d.hpp | 1365 |
1 files changed, 1365 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/features2d.hpp b/thirdparty/linux/include/opencv2/features2d.hpp new file mode 100644 index 0000000..70fe409 --- /dev/null +++ b/thirdparty/linux/include/opencv2/features2d.hpp @@ -0,0 +1,1365 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_FEATURES_2D_HPP +#define OPENCV_FEATURES_2D_HPP + +#include "opencv2/core.hpp" +#include "opencv2/flann/miniflann.hpp" + +/** + @defgroup features2d 2D Features Framework + @{ + @defgroup features2d_main Feature Detection and Description + @defgroup features2d_match Descriptor Matchers + +Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to +easily switch between different algorithms solving the same problem. This section is devoted to +matching descriptors that are represented as vectors in a multidimensional space. All objects that +implement vector descriptor matchers inherit the DescriptorMatcher interface. + +@note + - An example explaining keypoint matching can be found at + opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp + - An example on descriptor matching evaluation can be found at + opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp + - An example on one to many image matching can be found at + opencv_source_code/samples/cpp/matching_to_many_images.cpp + + @defgroup features2d_draw Drawing Function of Keypoints and Matches + @defgroup features2d_category Object Categorization + +This section describes approaches based on local 2D features and used to categorize objects. + +@note + - A complete Bag-Of-Words sample can be found at + opencv_source_code/samples/cpp/bagofwords_classification.cpp + - (Python) An example using the features2D framework to perform object categorization can be + found at opencv_source_code/samples/python/find_obj.py + + @} + */ + +namespace cv +{ + +//! @addtogroup features2d +//! @{ + +// //! writes vector of keypoints to the file storage +// CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints); +// //! reads vector of keypoints from the specified file storage node +// CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints); + +/** @brief A class filters a vector of keypoints. + + Because now it is difficult to provide a convenient interface for all usage scenarios of the + keypoints filter class, it has only several needed by now static methods. + */ +class CV_EXPORTS KeyPointsFilter +{ +public: + KeyPointsFilter(){} + + /* + * Remove keypoints within borderPixels of an image edge. + */ + static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize ); + /* + * Remove keypoints of sizes out of range. + */ + static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize, + float maxSize=FLT_MAX ); + /* + * Remove keypoints from some image by mask for pixels of this image. + */ + static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask ); + /* + * Remove duplicated keypoints. + */ + static void removeDuplicated( std::vector<KeyPoint>& keypoints ); + + /* + * Retain the specified number of the best keypoints (according to the response) + */ + static void retainBest( std::vector<KeyPoint>& keypoints, int npoints ); +}; + + +/************************************ Base Classes ************************************/ + +/** @brief Abstract base class for 2D image feature detectors and descriptor extractors +*/ +class CV_EXPORTS_W Feature2D : public virtual Algorithm +{ +public: + virtual ~Feature2D(); + + /** @brief Detects keypoints in an image (first variant) or image set (second variant). + + @param image Image. + @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set + of keypoints detected in images[i] . + @param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer + matrix with non-zero values in the region of interest. + */ + CV_WRAP virtual void detect( InputArray image, + CV_OUT std::vector<KeyPoint>& keypoints, + InputArray mask=noArray() ); + + /** @overload + @param images Image set. + @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set + of keypoints detected in images[i] . + @param masks Masks for each input image specifying where to look for keypoints (optional). + masks[i] is a mask for images[i]. + */ + CV_WRAP virtual void detect( InputArrayOfArrays images, + CV_OUT std::vector<std::vector<KeyPoint> >& keypoints, + InputArrayOfArrays masks=noArray() ); + + /** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set + (second variant). + + @param image Image. + @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be + computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint + with several dominant orientations (for each orientation). + @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are + descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the + descriptor for keypoint j-th keypoint. + */ + CV_WRAP virtual void compute( InputArray image, + CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, + OutputArray descriptors ); + + /** @overload + + @param images Image set. + @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be + computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint + with several dominant orientations (for each orientation). + @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are + descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the + descriptor for keypoint j-th keypoint. + */ + CV_WRAP virtual void compute( InputArrayOfArrays images, + CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints, + OutputArrayOfArrays descriptors ); + + /** Detects keypoints and computes the descriptors */ + CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask, + CV_OUT std::vector<KeyPoint>& keypoints, + OutputArray descriptors, + bool useProvidedKeypoints=false ); + + CV_WRAP virtual int descriptorSize() const; + CV_WRAP virtual int descriptorType() const; + CV_WRAP virtual int defaultNorm() const; + + CV_WRAP void write( const String& fileName ) const; + + CV_WRAP void read( const String& fileName ); + + virtual void write( FileStorage&) const; + + virtual void read( const FileNode&); + + //! Return true if detector object is empty + CV_WRAP virtual bool empty() const; +}; + +/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch +between different algorithms solving the same problem. All objects that implement keypoint detectors +inherit the FeatureDetector interface. */ +typedef Feature2D FeatureDetector; + +/** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you +to easily switch between different algorithms solving the same problem. This section is devoted to +computing descriptors represented as vectors in a multidimensional space. All objects that implement +the vector descriptor extractors inherit the DescriptorExtractor interface. + */ +typedef Feature2D DescriptorExtractor; + +//! @addtogroup features2d_main +//! @{ + +/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 . + */ +class CV_EXPORTS_W BRISK : public Feature2D +{ +public: + /** @brief The BRISK constructor + + @param thresh AGAST detection threshold score. + @param octaves detection octaves. Use 0 to do single scale. + @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a + keypoint. + */ + CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f); + + /** @brief The BRISK constructor for a custom pattern + + @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for + keypoint scale 1). + @param numberList defines the number of sampling points on the sampling circle. Must be the same + size as radiusList.. + @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint + scale 1). + @param dMin threshold for the long pairings used for orientation determination (in pixels for + keypoint scale 1). + @param indexChange index remapping of the bits. */ + CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList, + float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>()); +}; + +/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor + +described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects +the strongest features using FAST or Harris response, finds their orientation using first-order +moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or +k-tuples) are rotated according to the measured orientation). + */ +class CV_EXPORTS_W ORB : public Feature2D +{ +public: + enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 }; + + /** @brief The ORB constructor + + @param nfeatures The maximum number of features to retain. + @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical + pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor + will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor + will mean that to cover certain scale range you will need more pyramid levels and so the speed + will suffer. + @param nlevels The number of pyramid levels. The smallest level will have linear size equal to + input_image_linear_size/pow(scaleFactor, nlevels). + @param edgeThreshold This is size of the border where the features are not detected. It should + roughly match the patchSize parameter. + @param firstLevel It should be 0 in the current implementation. + @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The + default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, + so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 + random points (of course, those point coordinates are random, but they are generated from the + pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel + rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such + output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, + denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each + bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3). + @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features + (the score is written to KeyPoint::score and is used to retain best nfeatures features); + FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints, + but it is a little faster to compute. + @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller + pyramid layers the perceived image area covered by a feature will be larger. + @param fastThreshold + */ + CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31, + int firstLevel=0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20); + + CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; + CV_WRAP virtual int getMaxFeatures() const = 0; + + CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0; + CV_WRAP virtual double getScaleFactor() const = 0; + + CV_WRAP virtual void setNLevels(int nlevels) = 0; + CV_WRAP virtual int getNLevels() const = 0; + + CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0; + CV_WRAP virtual int getEdgeThreshold() const = 0; + + CV_WRAP virtual void setFirstLevel(int firstLevel) = 0; + CV_WRAP virtual int getFirstLevel() const = 0; + + CV_WRAP virtual void setWTA_K(int wta_k) = 0; + CV_WRAP virtual int getWTA_K() const = 0; + + CV_WRAP virtual void setScoreType(int scoreType) = 0; + CV_WRAP virtual int getScoreType() const = 0; + + CV_WRAP virtual void setPatchSize(int patchSize) = 0; + CV_WRAP virtual int getPatchSize() const = 0; + + CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0; + CV_WRAP virtual int getFastThreshold() const = 0; +}; + +/** @brief Maximally stable extremal region extractor + +The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki +article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)). + +- there are two different implementation of %MSER: one for grey image, one for color image + +- the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster +than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop. + +- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower +than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source +code which is distributed under GPL. + +- (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py +*/ +class CV_EXPORTS_W MSER : public Feature2D +{ +public: + /** @brief Full consturctor for %MSER detector + + @param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$ + @param _min_area prune the area which smaller than minArea + @param _max_area prune the area which bigger than maxArea + @param _max_variation prune the area have simliar size to its children + @param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity + @param _max_evolution for color image, the evolution steps + @param _area_threshold for color image, the area threshold to cause re-initialize + @param _min_margin for color image, ignore too small margin + @param _edge_blur_size for color image, the aperture size for edge blur + */ + CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400, + double _max_variation=0.25, double _min_diversity=.2, + int _max_evolution=200, double _area_threshold=1.01, + double _min_margin=0.003, int _edge_blur_size=5 ); + + /** @brief Detect %MSER regions + + @param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3) + @param msers resulting list of point sets + @param bboxes resulting bounding boxes + */ + CV_WRAP virtual void detectRegions( InputArray image, + CV_OUT std::vector<std::vector<Point> >& msers, + CV_OUT std::vector<Rect>& bboxes ) = 0; + + CV_WRAP virtual void setDelta(int delta) = 0; + CV_WRAP virtual int getDelta() const = 0; + + CV_WRAP virtual void setMinArea(int minArea) = 0; + CV_WRAP virtual int getMinArea() const = 0; + + CV_WRAP virtual void setMaxArea(int maxArea) = 0; + CV_WRAP virtual int getMaxArea() const = 0; + + CV_WRAP virtual void setPass2Only(bool f) = 0; + CV_WRAP virtual bool getPass2Only() const = 0; +}; + +/** @overload */ +CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression=true ); + +/** @brief Detects corners using the FAST algorithm + +@param image grayscale image where keypoints (corners) are detected. +@param keypoints keypoints detected on the image. +@param threshold threshold on difference between intensity of the central pixel and pixels of a +circle around this pixel. +@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners +(keypoints). +@param type one of the three neighborhoods as defined in the paper: +FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, +FastFeatureDetector::TYPE_5_8 + +Detects corners using the FAST algorithm by @cite Rosten06 . + +@note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8, +cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner +detection, use cv2.FAST.detect() method. + */ +CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression, int type ); + +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Wrapping class for feature detection using the FAST method. : + */ +class CV_EXPORTS_W FastFeatureDetector : public Feature2D +{ +public: + enum + { + TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2, + THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002, + }; + + CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10, + bool nonmaxSuppression=true, + int type=FastFeatureDetector::TYPE_9_16 ); + + CV_WRAP virtual void setThreshold(int threshold) = 0; + CV_WRAP virtual int getThreshold() const = 0; + + CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; + CV_WRAP virtual bool getNonmaxSuppression() const = 0; + + CV_WRAP virtual void setType(int type) = 0; + CV_WRAP virtual int getType() const = 0; +}; + +/** @overload */ +CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression=true ); + +/** @brief Detects corners using the AGAST algorithm + +@param image grayscale image where keypoints (corners) are detected. +@param keypoints keypoints detected on the image. +@param threshold threshold on difference between intensity of the central pixel and pixels of a +circle around this pixel. +@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners +(keypoints). +@param type one of the four neighborhoods as defined in the paper: +AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d, +AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16 + +For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results. +The 32-bit binary tree tables were generated automatically from original code using perl script. +The perl script and examples of tree generation are placed in features2d/doc folder. +Detects corners using the AGAST algorithm by @cite mair2010_agast . + + */ +CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints, + int threshold, bool nonmaxSuppression, int type ); +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Wrapping class for feature detection using the AGAST method. : + */ +class CV_EXPORTS_W AgastFeatureDetector : public Feature2D +{ +public: + enum + { + AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3, + THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001, + }; + + CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10, + bool nonmaxSuppression=true, + int type=AgastFeatureDetector::OAST_9_16 ); + + CV_WRAP virtual void setThreshold(int threshold) = 0; + CV_WRAP virtual int getThreshold() const = 0; + + CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; + CV_WRAP virtual bool getNonmaxSuppression() const = 0; + + CV_WRAP virtual void setType(int type) = 0; + CV_WRAP virtual int getType() const = 0; +}; + +/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. : + */ +class CV_EXPORTS_W GFTTDetector : public Feature2D +{ +public: + CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, + int blockSize=3, bool useHarrisDetector=false, double k=0.04 ); + CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; + CV_WRAP virtual int getMaxFeatures() const = 0; + + CV_WRAP virtual void setQualityLevel(double qlevel) = 0; + CV_WRAP virtual double getQualityLevel() const = 0; + + CV_WRAP virtual void setMinDistance(double minDistance) = 0; + CV_WRAP virtual double getMinDistance() const = 0; + + CV_WRAP virtual void setBlockSize(int blockSize) = 0; + CV_WRAP virtual int getBlockSize() const = 0; + + CV_WRAP virtual void setHarrisDetector(bool val) = 0; + CV_WRAP virtual bool getHarrisDetector() const = 0; + + CV_WRAP virtual void setK(double k) = 0; + CV_WRAP virtual double getK() const = 0; +}; + +/** @brief Class for extracting blobs from an image. : + +The class implements a simple algorithm for extracting blobs from an image: + +1. Convert the source image to binary images by applying thresholding with several thresholds from + minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between + neighboring thresholds. +2. Extract connected components from every binary image by findContours and calculate their + centers. +3. Group centers from several binary images by their coordinates. Close centers form one group that + corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter. +4. From the groups, estimate final centers of blobs and their radiuses and return as locations and + sizes of keypoints. + +This class performs several filtrations of returned blobs. You should set filterBy\* to true/false +to turn on/off corresponding filtration. Available filtrations: + +- **By color**. This filter compares the intensity of a binary image at the center of a blob to +blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs +and blobColor = 255 to extract light blobs. +- **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive). +- **By circularity**. Extracted blobs have circularity +(\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and +maxCircularity (exclusive). +- **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio +between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive). +- **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between +minConvexity (inclusive) and maxConvexity (exclusive). + +Default values of parameters are tuned to extract dark circular blobs. + */ +class CV_EXPORTS_W SimpleBlobDetector : public Feature2D +{ +public: + struct CV_EXPORTS_W_SIMPLE Params + { + CV_WRAP Params(); + CV_PROP_RW float thresholdStep; + CV_PROP_RW float minThreshold; + CV_PROP_RW float maxThreshold; + CV_PROP_RW size_t minRepeatability; + CV_PROP_RW float minDistBetweenBlobs; + + CV_PROP_RW bool filterByColor; + CV_PROP_RW uchar blobColor; + + CV_PROP_RW bool filterByArea; + CV_PROP_RW float minArea, maxArea; + + CV_PROP_RW bool filterByCircularity; + CV_PROP_RW float minCircularity, maxCircularity; + + CV_PROP_RW bool filterByInertia; + CV_PROP_RW float minInertiaRatio, maxInertiaRatio; + + CV_PROP_RW bool filterByConvexity; + CV_PROP_RW float minConvexity, maxConvexity; + + void read( const FileNode& fn ); + void write( FileStorage& fs ) const; + }; + + CV_WRAP static Ptr<SimpleBlobDetector> + create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params()); +}; + +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 . + +@note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo +F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision +(ECCV), Fiorenze, Italy, October 2012. +*/ +class CV_EXPORTS_W KAZE : public Feature2D +{ +public: + enum + { + DIFF_PM_G1 = 0, + DIFF_PM_G2 = 1, + DIFF_WEICKERT = 2, + DIFF_CHARBONNIER = 3 + }; + + /** @brief The KAZE constructor + + @param extended Set to enable extraction of extended (128-byte) descriptor. + @param upright Set to enable use of upright descriptors (non rotation-invariant). + @param threshold Detector response threshold to accept point + @param nOctaves Maximum octave evolution of the image + @param nOctaveLayers Default number of sublevels per scale level + @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or + DIFF_CHARBONNIER + */ + CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false, + float threshold = 0.001f, + int nOctaves = 4, int nOctaveLayers = 4, + int diffusivity = KAZE::DIFF_PM_G2); + + CV_WRAP virtual void setExtended(bool extended) = 0; + CV_WRAP virtual bool getExtended() const = 0; + + CV_WRAP virtual void setUpright(bool upright) = 0; + CV_WRAP virtual bool getUpright() const = 0; + + CV_WRAP virtual void setThreshold(double threshold) = 0; + CV_WRAP virtual double getThreshold() const = 0; + + CV_WRAP virtual void setNOctaves(int octaves) = 0; + CV_WRAP virtual int getNOctaves() const = 0; + + CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; + CV_WRAP virtual int getNOctaveLayers() const = 0; + + CV_WRAP virtual void setDiffusivity(int diff) = 0; + CV_WRAP virtual int getDiffusivity() const = 0; +}; + +/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13 . : + +@note AKAZE descriptors can only be used with KAZE or AKAZE keypoints. Try to avoid using *extract* +and *detect* instead of *operator()* due to performance reasons. .. [ANB13] Fast Explicit Diffusion +for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien +Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013. + */ +class CV_EXPORTS_W AKAZE : public Feature2D +{ +public: + // AKAZE descriptor type + enum + { + DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation + DESCRIPTOR_KAZE = 3, + DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation + DESCRIPTOR_MLDB = 5 + }; + + /** @brief The AKAZE constructor + + @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE, + DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT. + @param descriptor_size Size of the descriptor in bits. 0 -\> Full size + @param descriptor_channels Number of channels in the descriptor (1, 2, 3) + @param threshold Detector response threshold to accept point + @param nOctaves Maximum octave evolution of the image + @param nOctaveLayers Default number of sublevels per scale level + @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or + DIFF_CHARBONNIER + */ + CV_WRAP static Ptr<AKAZE> create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB, + int descriptor_size = 0, int descriptor_channels = 3, + float threshold = 0.001f, int nOctaves = 4, + int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2); + + CV_WRAP virtual void setDescriptorType(int dtype) = 0; + CV_WRAP virtual int getDescriptorType() const = 0; + + CV_WRAP virtual void setDescriptorSize(int dsize) = 0; + CV_WRAP virtual int getDescriptorSize() const = 0; + + CV_WRAP virtual void setDescriptorChannels(int dch) = 0; + CV_WRAP virtual int getDescriptorChannels() const = 0; + + CV_WRAP virtual void setThreshold(double threshold) = 0; + CV_WRAP virtual double getThreshold() const = 0; + + CV_WRAP virtual void setNOctaves(int octaves) = 0; + CV_WRAP virtual int getNOctaves() const = 0; + + CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; + CV_WRAP virtual int getNOctaveLayers() const = 0; + + CV_WRAP virtual void setDiffusivity(int diff) = 0; + CV_WRAP virtual int getDiffusivity() const = 0; +}; + +//! @} features2d_main + +/****************************************************************************************\ +* Distance * +\****************************************************************************************/ + +template<typename T> +struct CV_EXPORTS Accumulator +{ + typedef T Type; +}; + +template<> struct Accumulator<unsigned char> { typedef float Type; }; +template<> struct Accumulator<unsigned short> { typedef float Type; }; +template<> struct Accumulator<char> { typedef float Type; }; +template<> struct Accumulator<short> { typedef float Type; }; + +/* + * Squared Euclidean distance functor + */ +template<class T> +struct CV_EXPORTS SL2 +{ + enum { normType = NORM_L2SQR }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return normL2Sqr<ValueType, ResultType>(a, b, size); + } +}; + +/* + * Euclidean distance functor + */ +template<class T> +struct CV_EXPORTS L2 +{ + enum { normType = NORM_L2 }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size)); + } +}; + +/* + * Manhattan distance (city block distance) functor + */ +template<class T> +struct CV_EXPORTS L1 +{ + enum { normType = NORM_L1 }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return normL1<ValueType, ResultType>(a, b, size); + } +}; + +/****************************************************************************************\ +* DescriptorMatcher * +\****************************************************************************************/ + +//! @addtogroup features2d_match +//! @{ + +/** @brief Abstract base class for matching keypoint descriptors. + +It has two groups of match methods: for matching descriptors of an image with another image or with +an image set. + */ +class CV_EXPORTS_W DescriptorMatcher : public Algorithm +{ +public: + enum + { + FLANNBASED = 1, + BRUTEFORCE = 2, + BRUTEFORCE_L1 = 3, + BRUTEFORCE_HAMMING = 4, + BRUTEFORCE_HAMMINGLUT = 5, + BRUTEFORCE_SL2 = 6 + }; + virtual ~DescriptorMatcher(); + + /** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor + collection. + + If the collection is not empty, the new descriptors are added to existing train descriptors. + + @param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same + train image. + */ + CV_WRAP virtual void add( InputArrayOfArrays descriptors ); + + /** @brief Returns a constant link to the train descriptor collection trainDescCollection . + */ + CV_WRAP const std::vector<Mat>& getTrainDescriptors() const; + + /** @brief Clears the train descriptor collections. + */ + CV_WRAP virtual void clear(); + + /** @brief Returns true if there are no train descriptors in the both collections. + */ + CV_WRAP virtual bool empty() const; + + /** @brief Returns true if the descriptor matcher supports masking permissible matches. + */ + CV_WRAP virtual bool isMaskSupported() const = 0; + + /** @brief Trains a descriptor matcher + + Trains a descriptor matcher (for example, the flann index). In all methods to match, the method + train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher) + have an empty implementation of this method. Other matchers really train their inner structures (for + example, FlannBasedMatcher trains flann::Index ). + */ + CV_WRAP virtual void train(); + + /** @brief Finds the best match for each descriptor from a query set. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param matches Matches. If a query descriptor is masked out in mask , no match is added for this + descriptor. So, matches size may be smaller than the query descriptors count. + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + + In the first variant of this method, the train descriptors are passed as an input argument. In the + second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is + used. Optional mask (or masks) can be passed to specify which query and training descriptors can be + matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if + mask.at\<uchar\>(i,j) is non-zero. + */ + CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const; + + /** @brief Finds the k best matches for each descriptor from a query set. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + @param matches Matches. Each matches[i] is k or less matches for the same query descriptor. + @param k Count of best matches found per each query descriptor or less if a query descriptor has + less than k possible matches in total. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + + These extended variants of DescriptorMatcher::match methods find several best matches for each query + descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match + for the details about query and train descriptors. + */ + CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector<std::vector<DMatch> >& matches, int k, + InputArray mask=noArray(), bool compactResult=false ) const; + + /** @brief For each query descriptor, finds the training descriptors not farther than the specified distance. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param matches Found matches. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + @param maxDistance Threshold for the distance between matched descriptors. Distance means here + metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured + in Pixels)! + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + + For each query descriptor, the methods find such training descriptors that the distance between the + query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are + returned in the distance increasing order. + */ + CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArray mask=noArray(), bool compactResult=false ) const; + + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Matches. If a query descriptor is masked out in mask , no match is added for this + descriptor. So, matches size may be smaller than the query descriptors count. + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + */ + CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches, + InputArrayOfArrays masks=noArray() ); + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Matches. Each matches[i] is k or less matches for the same query descriptor. + @param k Count of best matches found per each query descriptor or less if a query descriptor has + less than k possible matches in total. + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + */ + CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Found matches. + @param maxDistance Threshold for the distance between matched descriptors. Distance means here + metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured + in Pixels)! + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + */ + CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + + CV_WRAP void write( const String& fileName ) const + { + FileStorage fs(fileName, FileStorage::WRITE); + write(fs); + } + + CV_WRAP void read( const String& fileName ) + { + FileStorage fs(fileName, FileStorage::READ); + read(fs.root()); + } + // Reads matcher object from a file node + virtual void read( const FileNode& ); + // Writes matcher object to a file storage + virtual void write( FileStorage& ) const; + + /** @brief Clones the matcher. + + @param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object, + that is, copies both parameters and train data. If emptyTrainData is true, the method creates an + object copy with the current parameters but with empty train data. + */ + CV_WRAP virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; + + /** @brief Creates a descriptor matcher of a given type with the default parameters (using default + constructor). + + @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are + supported: + - `BruteForce` (it uses L2 ) + - `BruteForce-L1` + - `BruteForce-Hamming` + - `BruteForce-Hamming(2)` + - `FlannBased` + */ + CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType ); + + CV_WRAP static Ptr<DescriptorMatcher> create( int matcherType ); + +protected: + /** + * Class to work with descriptors from several images as with one merged matrix. + * It is used e.g. in FlannBasedMatcher. + */ + class CV_EXPORTS DescriptorCollection + { + public: + DescriptorCollection(); + DescriptorCollection( const DescriptorCollection& collection ); + virtual ~DescriptorCollection(); + + // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here. + void set( const std::vector<Mat>& descriptors ); + virtual void clear(); + + const Mat& getDescriptors() const; + const Mat getDescriptor( int imgIdx, int localDescIdx ) const; + const Mat getDescriptor( int globalDescIdx ) const; + void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const; + + int size() const; + + protected: + Mat mergedDescriptors; + std::vector<int> startIdxs; + }; + + //! In fact the matching is implemented only by the following two methods. These methods suppose + //! that the class object has been trained already. Public match methods call these methods + //! after calling train(). + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; + + static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx ); + static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx ); + + static Mat clone_op( Mat m ) { return m.clone(); } + void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const; + + //! Collection of descriptors from train images. + std::vector<Mat> trainDescCollection; + std::vector<UMat> utrainDescCollection; +}; + +/** @brief Brute-force descriptor matcher. + +For each descriptor in the first set, this matcher finds the closest descriptor in the second set +by trying each one. This descriptor matcher supports masking permissible matches of descriptor +sets. + */ +class CV_EXPORTS_W BFMatcher : public DescriptorMatcher +{ +public: + /** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create() + * + * + */ + CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false ); + + virtual ~BFMatcher() {} + + virtual bool isMaskSupported() const { return true; } + + /* @brief Brute-force matcher create method. + @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are + preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and + BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor + description). + @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k + nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with + k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the + matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent + pairs. Such technique usually produces best results with minimal number of outliers when there are + enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper. + */ + CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ; + + virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; +protected: + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + int normType; + bool crossCheck; +}; + + +/** @brief Flann-based descriptor matcher. + +This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search +methods to find the best matches. So, this matcher may be faster when matching a large train +collection than the brute force matcher. FlannBasedMatcher does not support masking permissible +matches of descriptor sets because flann::Index does not support this. : + */ +class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher +{ +public: + CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(), + const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() ); + + virtual void add( InputArrayOfArrays descriptors ); + virtual void clear(); + + // Reads matcher object from a file node + virtual void read( const FileNode& ); + // Writes matcher object to a file storage + virtual void write( FileStorage& ) const; + + virtual void train(); + virtual bool isMaskSupported() const; + + CV_WRAP static Ptr<FlannBasedMatcher> create(); + + virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; +protected: + static void convertToDMatches( const DescriptorCollection& descriptors, + const Mat& indices, const Mat& distances, + std::vector<std::vector<DMatch> >& matches ); + + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + Ptr<flann::IndexParams> indexParams; + Ptr<flann::SearchParams> searchParams; + Ptr<flann::Index> flannIndex; + + DescriptorCollection mergedDescriptors; + int addedDescCount; +}; + +//! @} features2d_match + +/****************************************************************************************\ +* Drawing functions * +\****************************************************************************************/ + +//! @addtogroup features2d_draw +//! @{ + +struct CV_EXPORTS DrawMatchesFlags +{ + enum{ DEFAULT = 0, //!< Output image matrix will be created (Mat::create), + //!< i.e. existing memory of output image may be reused. + //!< Two source image, matches and single keypoints will be drawn. + //!< For each keypoint only the center point will be drawn (without + //!< the circle around keypoint with keypoint size and orientation). + DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create). + //!< Matches will be drawn on existing content of output image. + NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn. + DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and + //!< orientation will be drawn. + }; +}; + +/** @brief Draws keypoints. + +@param image Source image. +@param keypoints Keypoints from the source image. +@param outImage Output image. Its content depends on the flags value defining what is drawn in the +output image. See possible flags bit values below. +@param color Color of keypoints. +@param flags Flags setting drawing features. Possible flags bit values are defined by +DrawMatchesFlags. See details above in drawMatches . + +@note +For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT, +cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG, +cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS + */ +CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage, + const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ); + +/** @brief Draws the found matches of keypoints from two images. + +@param img1 First source image. +@param keypoints1 Keypoints from the first source image. +@param img2 Second source image. +@param keypoints2 Keypoints from the second source image. +@param matches1to2 Matches from the first image to the second one, which means that keypoints1[i] +has a corresponding point in keypoints2[matches[i]] . +@param outImg Output image. Its content depends on the flags value defining what is drawn in the +output image. See possible flags bit values below. +@param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1) +, the color is generated randomly. +@param singlePointColor Color of single keypoints (circles), which means that keypoints do not +have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly. +@param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are +drawn. +@param flags Flags setting drawing features. Possible flags bit values are defined by +DrawMatchesFlags. + +This function draws matches of keypoints from two images in the output image. Match is a line +connecting two keypoints (circles). See cv::DrawMatchesFlags. + */ +CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1, + InputArray img2, const std::vector<KeyPoint>& keypoints2, + const std::vector<DMatch>& matches1to2, InputOutputArray outImg, + const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), + const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT ); + +/** @overload */ +CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1, + InputArray img2, const std::vector<KeyPoint>& keypoints2, + const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg, + const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), + const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT ); + +//! @} features2d_draw + +/****************************************************************************************\ +* Functions to evaluate the feature detectors and [generic] descriptor extractors * +\****************************************************************************************/ + +CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2, + std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2, + float& repeatability, int& correspCount, + const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() ); + +CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2, + const std::vector<std::vector<uchar> >& correctMatches1to2Mask, + std::vector<Point2f>& recallPrecisionCurve ); + +CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision ); +CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision ); + +/****************************************************************************************\ +* Bag of visual words * +\****************************************************************************************/ + +//! @addtogroup features2d_category +//! @{ + +/** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors. + +For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka, +Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. : + */ +class CV_EXPORTS_W BOWTrainer +{ +public: + BOWTrainer(); + virtual ~BOWTrainer(); + + /** @brief Adds descriptors to a training set. + + @param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a + descriptor. + + The training set is clustered using clustermethod to construct the vocabulary. + */ + CV_WRAP void add( const Mat& descriptors ); + + /** @brief Returns a training set of descriptors. + */ + CV_WRAP const std::vector<Mat>& getDescriptors() const; + + /** @brief Returns the count of all descriptors stored in the training set. + */ + CV_WRAP int descriptorsCount() const; + + CV_WRAP virtual void clear(); + + /** @overload */ + CV_WRAP virtual Mat cluster() const = 0; + + /** @brief Clusters train descriptors. + + @param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor. + Descriptors are not added to the inner train descriptor set. + + The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first + variant of the method, train descriptors stored in the object are clustered. In the second variant, + input descriptors are clustered. + */ + CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0; + +protected: + std::vector<Mat> descriptors; + int size; +}; + +/** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. : + */ +class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer +{ +public: + /** @brief The constructor. + + @see cv::kmeans + */ + CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), + int attempts=3, int flags=KMEANS_PP_CENTERS ); + virtual ~BOWKMeansTrainer(); + + // Returns trained vocabulary (i.e. cluster centers). + CV_WRAP virtual Mat cluster() const; + CV_WRAP virtual Mat cluster( const Mat& descriptors ) const; + +protected: + + int clusterCount; + TermCriteria termcrit; + int attempts; + int flags; +}; + +/** @brief Class to compute an image descriptor using the *bag of visual words*. + +Such a computation consists of the following steps: + +1. Compute descriptors for a given image and its keypoints set. +2. Find the nearest visual words from the vocabulary for each keypoint descriptor. +3. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words +encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the +vocabulary in the given image. + */ +class CV_EXPORTS_W BOWImgDescriptorExtractor +{ +public: + /** @brief The constructor. + + @param dextractor Descriptor extractor that is used to compute descriptors for an input image and + its keypoints. + @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary + for each keypoint descriptor of the image. + */ + CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, + const Ptr<DescriptorMatcher>& dmatcher ); + /** @overload */ + BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher ); + virtual ~BOWImgDescriptorExtractor(); + + /** @brief Sets a visual vocabulary. + + @param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the + vocabulary is a visual word (cluster center). + */ + CV_WRAP void setVocabulary( const Mat& vocabulary ); + + /** @brief Returns the set vocabulary. + */ + CV_WRAP const Mat& getVocabulary() const; + + /** @brief Computes an image descriptor using the set visual vocabulary. + + @param image Image, for which the descriptor is computed. + @param keypoints Keypoints detected in the input image. + @param imgDescriptor Computed output image descriptor. + @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that + pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) + returned if it is non-zero. + @param descriptors Descriptors of the image keypoints that are returned if they are non-zero. + */ + void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor, + std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 ); + /** @overload + @param keypointDescriptors Computed descriptors to match with vocabulary. + @param imgDescriptor Computed output image descriptor. + @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that + pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) + returned if it is non-zero. + */ + void compute( InputArray keypointDescriptors, OutputArray imgDescriptor, + std::vector<std::vector<int> >* pointIdxsOfClusters=0 ); + // compute() is not constant because DescriptorMatcher::match is not constant + + CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor ) + { compute(image,keypoints,imgDescriptor); } + + /** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0. + */ + CV_WRAP int descriptorSize() const; + + /** @brief Returns an image descriptor type. + */ + CV_WRAP int descriptorType() const; + +protected: + Mat vocabulary; + Ptr<DescriptorExtractor> dextractor; + Ptr<DescriptorMatcher> dmatcher; +}; + +//! @} features2d_category + +//! @} features2d + +} /* namespace cv */ + +#endif |