diff options
Diffstat (limited to 'thirdparty/linux/include/opencv2/face.hpp')
-rw-r--r-- | thirdparty/linux/include/opencv2/face.hpp | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/face.hpp b/thirdparty/linux/include/opencv2/face.hpp new file mode 100644 index 0000000..a90a1da --- /dev/null +++ b/thirdparty/linux/include/opencv2/face.hpp @@ -0,0 +1,375 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_FACE_HPP__ +#define __OPENCV_FACE_HPP__ + +/** +@defgroup face Face Recognition + +- @ref face_changelog +- @ref tutorial_face_main + +*/ + +#include "opencv2/core.hpp" +#include "face/predict_collector.hpp" +#include <map> + +namespace cv { namespace face { + +//! @addtogroup face +//! @{ + +/** @brief Abstract base class for all face recognition models + +All face recognition models in OpenCV are derived from the abstract base class FaceRecognizer, which +provides a unified access to all face recongition algorithms in OpenCV. + +### Description + +I'll go a bit more into detail explaining FaceRecognizer, because it doesn't look like a powerful +interface at first sight. But: Every FaceRecognizer is an Algorithm, so you can easily get/set all +model internals (if allowed by the implementation). Algorithm is a relatively new OpenCV concept, +which is available since the 2.4 release. I suggest you take a look at its description. + +Algorithm provides the following features for all derived classes: + +- So called “virtual constructor”. That is, each Algorithm derivative is registered at program + start and you can get the list of registered algorithms and create instance of a particular + algorithm by its name (see Algorithm::create). If you plan to add your own algorithms, it is + good practice to add a unique prefix to your algorithms to distinguish them from other + algorithms. +- Setting/Retrieving algorithm parameters by name. If you used video capturing functionality from + OpenCV highgui module, you are probably familar with cv::cvSetCaptureProperty, +ocvcvGetCaptureProperty, VideoCapture::set and VideoCapture::get. Algorithm provides similar + method where instead of integer id's you specify the parameter names as text Strings. See + Algorithm::set and Algorithm::get for details. +- Reading and writing parameters from/to XML or YAML files. Every Algorithm derivative can store + all its parameters and then read them back. There is no need to re-implement it each time. + +Moreover every FaceRecognizer supports the: + +- **Training** of a FaceRecognizer with FaceRecognizer::train on a given set of images (your face + database!). +- **Prediction** of a given sample image, that means a face. The image is given as a Mat. +- **Loading/Saving** the model state from/to a given XML or YAML. +- **Setting/Getting labels info**, that is stored as a string. String labels info is useful for + keeping names of the recognized people. + +@note When using the FaceRecognizer interface in combination with Python, please stick to Python 2. +Some underlying scripts like create_csv will not work in other versions, like Python 3. Setting the +Thresholds +++++++++++++++++++++++ + +Sometimes you run into the situation, when you want to apply a threshold on the prediction. A common +scenario in face recognition is to tell, whether a face belongs to the training dataset or if it is +unknown. You might wonder, why there's no public API in FaceRecognizer to set the threshold for the +prediction, but rest assured: It's supported. It just means there's no generic way in an abstract +class to provide an interface for setting/getting the thresholds of *every possible* FaceRecognizer +algorithm. The appropriate place to set the thresholds is in the constructor of the specific +FaceRecognizer and since every FaceRecognizer is a Algorithm (see above), you can get/set the +thresholds at runtime! + +Here is an example of setting a threshold for the Eigenfaces method, when creating the model: + +@code +// Let's say we want to keep 10 Eigenfaces and have a threshold value of 10.0 +int num_components = 10; +double threshold = 10.0; +// Then if you want to have a cv::FaceRecognizer with a confidence threshold, +// create the concrete implementation with the appropiate parameters: +Ptr<FaceRecognizer> model = createEigenFaceRecognizer(num_components, threshold); +@endcode + +Sometimes it's impossible to train the model, just to experiment with threshold values. Thanks to +Algorithm it's possible to set internal model thresholds during runtime. Let's see how we would +set/get the prediction for the Eigenface model, we've created above: + +@code +// The following line reads the threshold from the Eigenfaces model: +double current_threshold = model->getDouble("threshold"); +// And this line sets the threshold to 0.0: +model->set("threshold", 0.0); +@endcode + +If you've set the threshold to 0.0 as we did above, then: + +@code +// +Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE); +// Get a prediction from the model. Note: We've set a threshold of 0.0 above, +// since the distance is almost always larger than 0.0, you'll get -1 as +// label, which indicates, this face is unknown +int predicted_label = model->predict(img); +// ... +@endcode + +is going to yield -1 as predicted label, which states this face is unknown. + +### Getting the name of a FaceRecognizer + +Since every FaceRecognizer is a Algorithm, you can use Algorithm::name to get the name of a +FaceRecognizer: + +@code +// Create a FaceRecognizer: +Ptr<FaceRecognizer> model = createEigenFaceRecognizer(); +// And here's how to get its name: +String name = model->name(); +@endcode + + */ +class CV_EXPORTS_W FaceRecognizer : public Algorithm +{ +public: + /** @brief Trains a FaceRecognizer with given data and associated labels. + + @param src The training images, that means the faces you want to learn. The data has to be + given as a vector\<Mat\>. + @param labels The labels corresponding to the images have to be given either as a vector\<int\> + or a + + The following source code snippet shows you how to learn a Fisherfaces model on a given set of + images. The images are read with imread and pushed into a std::vector\<Mat\>. The labels of each + image are stored within a std::vector\<int\> (you could also use a Mat of type CV_32SC1). Think of + the label as the subject (the person) this image belongs to, so same subjects (persons) should have + the same label. For the available FaceRecognizer you don't have to pay any attention to the order of + the labels, just make sure same persons have the same label: + + @code + // holds images and labels + vector<Mat> images; + vector<int> labels; + // images for first person + images.push_back(imread("person0/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0); + images.push_back(imread("person0/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0); + images.push_back(imread("person0/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0); + // images for second person + images.push_back(imread("person1/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1); + images.push_back(imread("person1/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1); + images.push_back(imread("person1/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1); + @endcode + + Now that you have read some images, we can create a new FaceRecognizer. In this example I'll create + a Fisherfaces model and decide to keep all of the possible Fisherfaces: + + @code + // Create a new Fisherfaces model and retain all available Fisherfaces, + // this is the most common usage of this specific FaceRecognizer: + // + Ptr<FaceRecognizer> model = createFisherFaceRecognizer(); + @endcode + + And finally train it on the given dataset (the face images and labels): + + @code + // This is the common interface to train all of the available cv::FaceRecognizer + // implementations: + // + model->train(images, labels); + @endcode + */ + CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0; + + /** @brief Updates a FaceRecognizer with given data and associated labels. + + @param src The training images, that means the faces you want to learn. The data has to be given + as a vector\<Mat\>. + @param labels The labels corresponding to the images have to be given either as a vector\<int\> or + a + + This method updates a (probably trained) FaceRecognizer, but only if the algorithm supports it. The + Local Binary Patterns Histograms (LBPH) recognizer (see createLBPHFaceRecognizer) can be updated. + For the Eigenfaces and Fisherfaces method, this is algorithmically not possible and you have to + re-estimate the model with FaceRecognizer::train. In any case, a call to train empties the existing + model and learns a new model, while update does not delete any model data. + + @code + // Create a new LBPH model (it can be updated) and use the default parameters, + // this is the most common usage of this specific FaceRecognizer: + // + Ptr<FaceRecognizer> model = createLBPHFaceRecognizer(); + // This is the common interface to train all of the available cv::FaceRecognizer + // implementations: + // + model->train(images, labels); + // Some containers to hold new image: + vector<Mat> newImages; + vector<int> newLabels; + // You should add some images to the containers: + // + // ... + // + // Now updating the model is as easy as calling: + model->update(newImages,newLabels); + // This will preserve the old model data and extend the existing model + // with the new features extracted from newImages! + @endcode + + Calling update on an Eigenfaces model (see createEigenFaceRecognizer), which doesn't support + updating, will throw an error similar to: + + @code + OpenCV Error: The function/feature is not implemented (This FaceRecognizer (FaceRecognizer.Eigenfaces) does not support updating, you have to use FaceRecognizer::train to update it.) in update, file /home/philipp/git/opencv/modules/contrib/src/facerec.cpp, line 305 + terminate called after throwing an instance of 'cv::Exception' + @endcode + + @note The FaceRecognizer does not store your training images, because this would be very + memory intense and it's not the responsibility of te FaceRecognizer to do so. The caller is + responsible for maintaining the dataset, he want to work with. + */ + CV_WRAP virtual void update(InputArrayOfArrays src, InputArray labels); + + /** @overload */ + CV_WRAP_AS(predict_label) int predict(InputArray src) const; + + + /** @brief Predicts a label and associated confidence (e.g. distance) for a given input image. + + @param src Sample image to get a prediction from. + @param label The predicted label for the given image. + @param confidence Associated confidence (e.g. distance) for the predicted label. + + The suffix const means that prediction does not affect the internal model state, so the method can + be safely called from within different threads. + + The following example shows how to get a prediction from a trained model: + + @code + using namespace cv; + // Do your initialization here (create the cv::FaceRecognizer model) ... + // ... + // Read in a sample image: + Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE); + // And get a prediction from the cv::FaceRecognizer: + int predicted = model->predict(img); + @endcode + + Or to get a prediction and the associated confidence (e.g. distance): + + @code + using namespace cv; + // Do your initialization here (create the cv::FaceRecognizer model) ... + // ... + Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE); + // Some variables for the predicted label and associated confidence (e.g. distance): + int predicted_label = -1; + double predicted_confidence = 0.0; + // Get the prediction and associated confidence from the model + model->predict(img, predicted_label, predicted_confidence); + @endcode + */ + CV_WRAP void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const; + + + /** @brief - if implemented - send all result of prediction to collector that can be used for somehow custom result handling + @param src Sample image to get a prediction from. + @param collector User-defined collector object that accepts all results + + To implement this method u just have to do same internal cycle as in predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) but + not try to get "best@ result, just resend it to caller side with given collector + */ + CV_WRAP_AS(predict_collect) virtual void predict(InputArray src, Ptr<PredictCollector> collector) const = 0; + + /** @brief Saves a FaceRecognizer and its model state. + + Saves this model to a given filename, either as XML or YAML. + @param filename The filename to store this FaceRecognizer to (either XML/YAML). + + Every FaceRecognizer overwrites FaceRecognizer::save(FileStorage& fs) to save the internal model + state. FaceRecognizer::save(const String& filename) saves the state of a model to the given + filename. + + The suffix const means that prediction does not affect the internal model state, so the method can + be safely called from within different threads. + */ + CV_WRAP virtual void save(const String& filename) const; + + /** @brief Loads a FaceRecognizer and its model state. + + Loads a persisted model and state from a given XML or YAML file . Every FaceRecognizer has to + overwrite FaceRecognizer::load(FileStorage& fs) to enable loading the model state. + FaceRecognizer::load(FileStorage& fs) in turn gets called by + FaceRecognizer::load(const String& filename), to ease saving a model. + */ + CV_WRAP virtual void load(const String& filename); + + /** @overload + Saves this model to a given FileStorage. + @param fs The FileStorage to store this FaceRecognizer to. + */ + virtual void save(FileStorage& fs) const = 0; + + /** @overload */ + virtual void load(const FileStorage& fs) = 0; + + /** @brief Sets string info for the specified model's label. + + The string info is replaced by the provided value if it was set before for the specified label. + */ + CV_WRAP virtual void setLabelInfo(int label, const String& strInfo); + + /** @brief Gets string information by label. + + If an unknown label id is provided or there is no label information associated with the specified + label id the method returns an empty string. + */ + CV_WRAP virtual String getLabelInfo(int label) const; + + /** @brief Gets vector of labels by string. + + The function searches for the labels containing the specified sub-string in the associated string + info. + */ + CV_WRAP virtual std::vector<int> getLabelsByString(const String& str) const; + /** @brief threshold parameter accessor - required for default BestMinDist collector */ + virtual double getThreshold() const = 0; + /** @brief Sets threshold of model */ + virtual void setThreshold(double val) = 0; +protected: + // Stored pairs "label id - string info" + std::map<int, String> _labelsInfo; +}; + +//! @} + +}} + +#include "opencv2/face/facerec.hpp" + +#endif |