summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/core.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/core.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/core.hpp3220
1 files changed, 3220 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/core.hpp b/thirdparty/linux/include/opencv2/core.hpp
new file mode 100644
index 0000000..6b89c42
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/core.hpp
@@ -0,0 +1,3220 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
+// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2015, OpenCV Foundation, all rights reserved.
+// Copyright (C) 2015, Itseez Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef OPENCV_CORE_HPP
+#define OPENCV_CORE_HPP
+
+#ifndef __cplusplus
+# error core.hpp header must be compiled as C++
+#endif
+
+#include "opencv2/core/cvdef.h"
+#include "opencv2/core/version.hpp"
+#include "opencv2/core/base.hpp"
+#include "opencv2/core/cvstd.hpp"
+#include "opencv2/core/traits.hpp"
+#include "opencv2/core/matx.hpp"
+#include "opencv2/core/types.hpp"
+#include "opencv2/core/mat.hpp"
+#include "opencv2/core/persistence.hpp"
+
+/**
+@defgroup core Core functionality
+@{
+ @defgroup core_basic Basic structures
+ @defgroup core_c C structures and operations
+ @{
+ @defgroup core_c_glue Connections with C++
+ @}
+ @defgroup core_array Operations on arrays
+ @defgroup core_xml XML/YAML Persistence
+ @defgroup core_cluster Clustering
+ @defgroup core_utils Utility and system functions and macros
+ @{
+ @defgroup core_utils_sse SSE utilities
+ @defgroup core_utils_neon NEON utilities
+ @}
+ @defgroup core_opengl OpenGL interoperability
+ @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
+ @defgroup core_optim Optimization Algorithms
+ @defgroup core_directx DirectX interoperability
+ @defgroup core_eigen Eigen support
+ @defgroup core_opencl OpenCL support
+ @defgroup core_va_intel Intel VA-API/OpenCL (CL-VA) interoperability
+ @defgroup core_hal Hardware Acceleration Layer
+ @{
+ @defgroup core_hal_functions Functions
+ @defgroup core_hal_interface Interface
+ @defgroup core_hal_intrin Universal intrinsics
+ @{
+ @defgroup core_hal_intrin_impl Private implementation helpers
+ @}
+ @}
+@}
+ */
+
+namespace cv {
+
+//! @addtogroup core_utils
+//! @{
+
+/*! @brief Class passed to an error.
+
+This class encapsulates all or almost all necessary
+information about the error happened in the program. The exception is
+usually constructed and thrown implicitly via CV_Error and CV_Error_ macros.
+@see error
+ */
+class CV_EXPORTS Exception : public std::exception
+{
+public:
+ /*!
+ Default constructor
+ */
+ Exception();
+ /*!
+ Full constructor. Normally the constuctor is not called explicitly.
+ Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
+ */
+ Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
+ virtual ~Exception() throw();
+
+ /*!
+ \return the error description and the context as a text string.
+ */
+ virtual const char *what() const throw();
+ void formatMessage();
+
+ String msg; ///< the formatted error message
+
+ int code; ///< error code @see CVStatus
+ String err; ///< error description
+ String func; ///< function name. Available only when the compiler supports getting it
+ String file; ///< source file name where the error has occured
+ int line; ///< line number in the source file where the error has occured
+};
+
+/*! @brief Signals an error and raises the exception.
+
+By default the function prints information about the error to stderr,
+then it either stops if cv::setBreakOnError() had been called before or raises the exception.
+It is possible to alternate error processing by using cv::redirectError().
+@param exc the exception raisen.
+@deprecated drop this version
+ */
+CV_EXPORTS void error( const Exception& exc );
+
+enum SortFlags { SORT_EVERY_ROW = 0, //!< each matrix row is sorted independently
+ SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted
+ //!< independently; this flag and the previous one are
+ //!< mutually exclusive.
+ SORT_ASCENDING = 0, //!< each matrix row is sorted in the ascending
+ //!< order.
+ SORT_DESCENDING = 16 //!< each matrix row is sorted in the
+ //!< descending order; this flag and the previous one are also
+ //!< mutually exclusive.
+ };
+
+//! @} core_utils
+
+//! @addtogroup core
+//! @{
+
+//! Covariation flags
+enum CovarFlags {
+ /** The output covariance matrix is calculated as:
+ \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],\f]
+ The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used
+ for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for
+ face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
+ covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of
+ the "scrambled" covariance matrix. */
+ COVAR_SCRAMBLED = 0,
+ /**The output covariance matrix is calculated as:
+ \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f]
+ covar will be a square matrix of the same size as the total number of elements in each input
+ vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/
+ COVAR_NORMAL = 1,
+ /** If the flag is specified, the function does not calculate mean from
+ the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
+ pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In
+ this case, mean is not a mean vector of the input sub-set of vectors but rather the mean
+ vector of the whole set.*/
+ COVAR_USE_AVG = 2,
+ /** If the flag is specified, the covariance matrix is scaled. In the
+ "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the
+ total number of elements in each input vector. By default (if the flag is not specified), the
+ covariance matrix is not scaled ( scale=1 ).*/
+ COVAR_SCALE = 4,
+ /** If the flag is
+ specified, all the input vectors are stored as rows of the samples matrix. mean should be a
+ single-row vector in this case.*/
+ COVAR_ROWS = 8,
+ /** If the flag is
+ specified, all the input vectors are stored as columns of the samples matrix. mean should be a
+ single-column vector in this case.*/
+ COVAR_COLS = 16
+};
+
+//! k-Means flags
+enum KmeansFlags {
+ /** Select random initial centers in each attempt.*/
+ KMEANS_RANDOM_CENTERS = 0,
+ /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/
+ KMEANS_PP_CENTERS = 2,
+ /** During the first (and possibly the only) attempt, use the
+ user-supplied labels instead of computing them from the initial centers. For the second and
+ further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag
+ to specify the exact method.*/
+ KMEANS_USE_INITIAL_LABELS = 1
+};
+
+//! type of line
+enum LineTypes {
+ FILLED = -1,
+ LINE_4 = 4, //!< 4-connected line
+ LINE_8 = 8, //!< 8-connected line
+ LINE_AA = 16 //!< antialiased line
+};
+
+//! Only a subset of Hershey fonts
+//! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported
+enum HersheyFonts {
+ FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font
+ FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font
+ FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
+ FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font
+ FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
+ FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
+ FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
+ FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
+ FONT_ITALIC = 16 //!< flag for italic font
+};
+
+enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
+ REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
+ REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix.
+ REDUCE_MIN = 3 //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix.
+ };
+
+
+/** @brief Swaps two matrices
+*/
+CV_EXPORTS void swap(Mat& a, Mat& b);
+/** @overload */
+CV_EXPORTS void swap( UMat& a, UMat& b );
+
+//! @} core
+
+//! @addtogroup core_array
+//! @{
+
+/** @brief Computes the source location of an extrapolated pixel.
+
+The function computes and returns the coordinate of a donor pixel corresponding to the specified
+extrapolated pixel when using the specified extrapolation border mode. For example, if you use
+cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
+want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
+looks like:
+@code{.cpp}
+ float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
+ borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
+@endcode
+Normally, the function is not called directly. It is used inside filtering functions and also in
+copyMakeBorder.
+@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
+@param len Length of the array along the corresponding axis.
+@param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
+cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
+of p and len.
+
+@sa copyMakeBorder
+*/
+CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
+
+/** @brief Forms a border around an image.
+
+The function copies the source image into the middle of the destination image. The areas to the
+left, to the right, above and below the copied source image will be filled with extrapolated
+pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
+what other more complex functions, including your own, may do to simplify image boundary handling.
+
+The function supports the mode when src is already in the middle of dst . In this case, the
+function does not copy src itself but simply constructs the border, for example:
+
+@code{.cpp}
+ // let border be the same in all directions
+ int border=2;
+ // constructs a larger image to fit both the image and the border
+ Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
+ // select the middle part of it w/o copying data
+ Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
+ // convert image from RGB to grayscale
+ cvtColor(rgb, gray, COLOR_RGB2GRAY);
+ // form a border in-place
+ copyMakeBorder(gray, gray_buf, border, border,
+ border, border, BORDER_REPLICATE);
+ // now do some custom filtering ...
+ ...
+@endcode
+@note When the source image is a part (ROI) of a bigger image, the function will try to use the
+pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
+if src was not a ROI, use borderType | BORDER_ISOLATED.
+
+@param src Source image.
+@param dst Destination image of the same type as src and the size Size(src.cols+left+right,
+src.rows+top+bottom) .
+@param top
+@param bottom
+@param left
+@param right Parameter specifying how many pixels in each direction from the source image rectangle
+to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
+to be built.
+@param borderType Border type. See borderInterpolate for details.
+@param value Border value if borderType==BORDER_CONSTANT .
+
+@sa borderInterpolate
+*/
+CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
+ int top, int bottom, int left, int right,
+ int borderType, const Scalar& value = Scalar() );
+
+/** @brief Calculates the per-element sum of two arrays or an array and a scalar.
+
+The function add calculates:
+- Sum of two arrays when both input arrays have the same size and the same number of channels:
+\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
+- Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
+elements as `src1.channels()`:
+\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
+- Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
+elements as `src2.channels()`:
+\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
+where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
+channel is processed independently.
+
+The first function in the list above can be replaced with matrix expressions:
+@code{.cpp}
+ dst = src1 + src2;
+ dst += src1; // equivalent to add(dst, src1, dst);
+@endcode
+The input arrays and the output array can all have the same or different depths. For example, you
+can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
+floating-point array. Depth of the output array is determined by the dtype parameter. In the second
+and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
+be set to the default -1. In this case, the output array will have the same depth as the input
+array, be it src1, src2 or both.
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and number of channels as the input array(s); the
+depth is defined by dtype or src1/src2.
+@param mask optional operation mask - 8-bit single channel array, that specifies elements of the
+output array to be changed.
+@param dtype optional depth of the output array (see the discussion below).
+@sa subtract, addWeighted, scaleAdd, Mat::convertTo
+*/
+CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
+ InputArray mask = noArray(), int dtype = -1);
+
+/** @brief Calculates the per-element difference between two arrays or array and a scalar.
+
+The function subtract calculates:
+- Difference between two arrays, when both input arrays have the same size and the same number of
+channels:
+ \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
+- Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
+number of elements as `src1.channels()`:
+ \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
+- Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
+number of elements as `src2.channels()`:
+ \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
+- The reverse difference between a scalar and an array in the case of `SubRS`:
+ \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
+where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
+channel is processed independently.
+
+The first function in the list above can be replaced with matrix expressions:
+@code{.cpp}
+ dst = src1 - src2;
+ dst -= src1; // equivalent to subtract(dst, src1, dst);
+@endcode
+The input arrays and the output array can all have the same or different depths. For example, you
+can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
+the output array is determined by dtype parameter. In the second and third cases above, as well as
+in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
+case the output array will have the same depth as the input array, be it src1, src2 or both.
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array of the same size and the same number of channels as the input array.
+@param mask optional operation mask; this is an 8-bit single channel array that specifies elements
+of the output array to be changed.
+@param dtype optional depth of the output array
+@sa add, addWeighted, scaleAdd, Mat::convertTo
+ */
+CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
+ InputArray mask = noArray(), int dtype = -1);
+
+
+/** @brief Calculates the per-element scaled product of two arrays.
+
+The function multiply calculates the per-element product of two arrays:
+
+\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
+
+There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
+
+For a not-per-element matrix product, see gemm .
+
+@note Saturation is not applied when the output array has the depth
+CV_32S. You may even get result of an incorrect sign in the case of
+overflow.
+@param src1 first input array.
+@param src2 second input array of the same size and the same type as src1.
+@param dst output array of the same size and type as src1.
+@param scale optional scale factor.
+@param dtype optional depth of the output array
+@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
+Mat::convertTo
+*/
+CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
+ OutputArray dst, double scale = 1, int dtype = -1);
+
+/** @brief Performs per-element division of two arrays or a scalar by an array.
+
+The function cv::divide divides one array by another:
+\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
+or a scalar by an array when there is no src1 :
+\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
+
+When src2(I) is zero, dst(I) will also be zero. Different channels of
+multi-channel arrays are processed independently.
+
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array.
+@param src2 second input array of the same size and type as src1.
+@param scale scalar factor.
+@param dst output array of the same size and type as src2.
+@param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
+case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
+@sa multiply, add, subtract
+*/
+CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
+ double scale = 1, int dtype = -1);
+
+/** @overload */
+CV_EXPORTS_W void divide(double scale, InputArray src2,
+ OutputArray dst, int dtype = -1);
+
+/** @brief Calculates the sum of a scaled array and another array.
+
+The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
+or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
+the sum of a scaled array and another array:
+\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f]
+The function can also be emulated with a matrix expression, for example:
+@code{.cpp}
+ Mat A(3, 3, CV_64F);
+ ...
+ A.row(0) = A.row(1)*2 + A.row(2);
+@endcode
+@param src1 first input array.
+@param alpha scale factor for the first array.
+@param src2 second input array of the same size and type as src1.
+@param dst output array of the same size and type as src1.
+@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
+*/
+CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
+
+/** @brief Calculates the weighted sum of two arrays.
+
+The function addWeighted calculates the weighted sum of two arrays as follows:
+\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f]
+where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
+channel is processed independently.
+The function can be replaced with a matrix expression:
+@code{.cpp}
+ dst = src1*alpha + src2*beta + gamma;
+@endcode
+@note Saturation is not applied when the output array has the depth CV_32S. You may even get
+result of an incorrect sign in the case of overflow.
+@param src1 first input array.
+@param alpha weight of the first array elements.
+@param src2 second input array of the same size and channel number as src1.
+@param beta weight of the second array elements.
+@param gamma scalar added to each sum.
+@param dst output array that has the same size and number of channels as the input arrays.
+@param dtype optional depth of the output array; when both input arrays have the same depth, dtype
+can be set to -1, which will be equivalent to src1.depth().
+@sa add, subtract, scaleAdd, Mat::convertTo
+*/
+CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
+ double beta, double gamma, OutputArray dst, int dtype = -1);
+
+/** @brief Scales, calculates absolute values, and converts the result to 8-bit.
+
+On each element of the input array, the function convertScaleAbs
+performs three operations sequentially: scaling, taking an absolute
+value, conversion to an unsigned 8-bit type:
+\f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f]
+In case of multi-channel arrays, the function processes each channel
+independently. When the output is not 8-bit, the operation can be
+emulated by calling the Mat::convertTo method (or by using matrix
+expressions) and then by calculating an absolute value of the result.
+For example:
+@code{.cpp}
+ Mat_<float> A(30,30);
+ randu(A, Scalar(-100), Scalar(100));
+ Mat_<float> B = A*5 + 3;
+ B = abs(B);
+ // Mat_<float> B = abs(A*5+3) will also do the job,
+ // but it will allocate a temporary matrix
+@endcode
+@param src input array.
+@param dst output array.
+@param alpha optional scale factor.
+@param beta optional delta added to the scaled values.
+@sa Mat::convertTo, cv::abs(const Mat&)
+*/
+CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
+ double alpha = 1, double beta = 0);
+
+/** @brief Converts an array to half precision floating number.
+
+This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). The input array has to have type of CV_32F or
+CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error.
+The format of half precision floating point is defined in IEEE 754-2008.
+
+@param src input array.
+@param dst output array.
+*/
+CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst);
+
+/** @brief Performs a look-up table transform of an array.
+
+The function LUT fills the output array with values from the look-up table. Indices of the entries
+are taken from the input array. That is, the function processes each element of src as follows:
+\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f]
+where
+\f[d = \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\f]
+@param src input array of 8-bit elements.
+@param lut look-up table of 256 elements; in case of multi-channel input array, the table should
+either have a single channel (in this case the same table is used for all channels) or the same
+number of channels as in the input array.
+@param dst output array of the same size and number of channels as src, and the same depth as lut.
+@sa convertScaleAbs, Mat::convertTo
+*/
+CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
+
+/** @brief Calculates the sum of array elements.
+
+The function cv::sum calculates and returns the sum of array elements,
+independently for each channel.
+@param src input array that must have from 1 to 4 channels.
+@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
+*/
+CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
+
+/** @brief Counts non-zero array elements.
+
+The function returns the number of non-zero elements in src :
+\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
+@param src single-channel array.
+@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
+*/
+CV_EXPORTS_W int countNonZero( InputArray src );
+
+/** @brief Returns the list of locations of non-zero pixels
+
+Given a binary matrix (likely returned from an operation such
+as threshold(), compare(), >, ==, etc, return all of
+the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
+For example:
+@code{.cpp}
+ cv::Mat binaryImage; // input, binary image
+ cv::Mat locations; // output, locations of non-zero pixels
+ cv::findNonZero(binaryImage, locations);
+
+ // access pixel coordinates
+ Point pnt = locations.at<Point>(i);
+@endcode
+or
+@code{.cpp}
+ cv::Mat binaryImage; // input, binary image
+ vector<Point> locations; // output, locations of non-zero pixels
+ cv::findNonZero(binaryImage, locations);
+
+ // access pixel coordinates
+ Point pnt = locations[i];
+@endcode
+@param src single-channel array (type CV_8UC1)
+@param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
+*/
+CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
+
+/** @brief Calculates an average (mean) of array elements.
+
+The function cv::mean calculates the mean value M of array elements,
+independently for each channel, and return it:
+\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
+When all the mask elements are 0's, the function returns Scalar::all(0)
+@param src input array that should have from 1 to 4 channels so that the result can be stored in
+Scalar_ .
+@param mask optional operation mask.
+@sa countNonZero, meanStdDev, norm, minMaxLoc
+*/
+CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
+
+/** Calculates a mean and standard deviation of array elements.
+
+The function cv::meanStdDev calculates the mean and the standard deviation M
+of array elements independently for each channel and returns it via the
+output parameters:
+\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f]
+When all the mask elements are 0's, the function returns
+mean=stddev=Scalar::all(0).
+@note The calculated standard deviation is only the diagonal of the
+complete normalized covariance matrix. If the full matrix is needed, you
+can reshape the multi-channel array M x N to the single-channel array
+M\*N x mtx.channels() (only possible when the matrix is continuous) and
+then pass the matrix to calcCovarMatrix .
+@param src input array that should have from 1 to 4 channels so that the results can be stored in
+Scalar_ 's.
+@param mean output parameter: calculated mean value.
+@param stddev output parameter: calculateded standard deviation.
+@param mask optional operation mask.
+@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
+*/
+CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
+ InputArray mask=noArray());
+
+/** @brief Calculates an absolute array norm, an absolute difference norm, or a
+relative difference norm.
+
+The function cv::norm calculates an absolute norm of src1 (when there is no
+src2 ):
+
+\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
+{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
+{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
+
+or an absolute or relative difference norm if src2 is there:
+
+\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
+{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
+{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f]
+
+or
+
+\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) }
+{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) }
+{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f]
+
+The function cv::norm returns the calculated norm.
+
+When the mask parameter is specified and it is not empty, the norm is
+calculated only over the region specified by the mask.
+
+A multi-channel input arrays are treated as a single-channel, that is,
+the results for all channels are combined.
+
+@param src1 first input array.
+@param normType type of the norm (see cv::NormTypes).
+@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
+*/
+CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
+
+/** @overload
+@param src1 first input array.
+@param src2 second input array of the same size and the same type as src1.
+@param normType type of the norm (cv::NormTypes).
+@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
+*/
+CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
+ int normType = NORM_L2, InputArray mask = noArray());
+/** @overload
+@param src first input array.
+@param normType type of the norm (see cv::NormTypes).
+*/
+CV_EXPORTS double norm( const SparseMat& src, int normType );
+
+/** @brief computes PSNR image/video quality metric
+
+see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details
+@todo document
+ */
+CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
+
+/** @brief naive nearest neighbor finder
+
+see http://en.wikipedia.org/wiki/Nearest_neighbor_search
+@todo document
+ */
+CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
+ OutputArray dist, int dtype, OutputArray nidx,
+ int normType = NORM_L2, int K = 0,
+ InputArray mask = noArray(), int update = 0,
+ bool crosscheck = false);
+
+/** @brief Normalizes the norm or value range of an array.
+
+The function cv::normalize normalizes scale and shift the input array elements so that
+\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
+(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
+\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
+
+when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
+normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
+sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
+min-max but modify the whole array, you can use norm and Mat::convertTo.
+
+In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
+the range transformation for sparse matrices is not allowed since it can shift the zero level.
+
+Possible usage with some positive example data:
+@code{.cpp}
+ vector<double> positiveData = { 2.0, 8.0, 10.0 };
+ vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
+
+ // Norm to probability (total count)
+ // sum(numbers) = 20.0
+ // 2.0 0.1 (2.0/20.0)
+ // 8.0 0.4 (8.0/20.0)
+ // 10.0 0.5 (10.0/20.0)
+ normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
+
+ // Norm to unit vector: ||positiveData|| = 1.0
+ // 2.0 0.15
+ // 8.0 0.62
+ // 10.0 0.77
+ normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
+
+ // Norm to max element
+ // 2.0 0.2 (2.0/10.0)
+ // 8.0 0.8 (8.0/10.0)
+ // 10.0 1.0 (10.0/10.0)
+ normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
+
+ // Norm to range [0.0;1.0]
+ // 2.0 0.0 (shift to left border)
+ // 8.0 0.75 (6.0/8.0)
+ // 10.0 1.0 (shift to right border)
+ normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
+@endcode
+
+@param src input array.
+@param dst output array of the same size as src .
+@param alpha norm value to normalize to or the lower range boundary in case of the range
+normalization.
+@param beta upper range boundary in case of the range normalization; it is not used for the norm
+normalization.
+@param norm_type normalization type (see cv::NormTypes).
+@param dtype when negative, the output array has the same type as src; otherwise, it has the same
+number of channels as src and the depth =CV_MAT_DEPTH(dtype).
+@param mask optional operation mask.
+@sa norm, Mat::convertTo, SparseMat::convertTo
+*/
+CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
+ int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
+
+/** @overload
+@param src input array.
+@param dst output array of the same size as src .
+@param alpha norm value to normalize to or the lower range boundary in case of the range
+normalization.
+@param normType normalization type (see cv::NormTypes).
+*/
+CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
+
+/** @brief Finds the global minimum and maximum in an array.
+
+The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
+extremums are searched across the whole array or, if mask is not an empty array, in the specified
+array region.
+
+The function do not work with multi-channel arrays. If you need to find minimum or maximum
+elements across all the channels, use Mat::reshape first to reinterpret the array as
+single-channel. Or you may extract the particular channel using either extractImageCOI , or
+mixChannels , or split .
+@param src input single-channel array.
+@param minVal pointer to the returned minimum value; NULL is used if not required.
+@param maxVal pointer to the returned maximum value; NULL is used if not required.
+@param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
+@param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
+@param mask optional mask used to select a sub-array.
+@sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
+*/
+CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
+ CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
+ CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
+
+
+/** @brief Finds the global minimum and maximum in an array
+
+The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The
+extremums are searched across the whole array or, if mask is not an empty array, in the specified
+array region. The function does not work with multi-channel arrays. If you need to find minimum or
+maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
+single-channel. Or you may extract the particular channel using either extractImageCOI , or
+mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements
+only.
+@note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is
+a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2
+dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be
+(i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be
+(0,j1)/(0,j2)).
+@param src input single-channel array.
+@param minVal pointer to the returned minimum value; NULL is used if not required.
+@param maxVal pointer to the returned maximum value; NULL is used if not required.
+@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
+Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
+in each dimension are stored there sequentially.
+@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
+@param mask specified array region
+*/
+CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
+ int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
+
+/** @overload
+@param a input single-channel array.
+@param minVal pointer to the returned minimum value; NULL is used if not required.
+@param maxVal pointer to the returned maximum value; NULL is used if not required.
+@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
+Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
+in each dimension are stored there sequentially.
+@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
+*/
+CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
+ double* maxVal, int* minIdx = 0, int* maxIdx = 0);
+
+/** @brief Reduces a matrix to a vector.
+
+The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
+1D vectors and performing the specified operation on the vectors until a single row/column is
+obtained. For example, the function can be used to compute horizontal and vertical projections of a
+raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one.
+In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
+And multi-channel arrays are also supported in these two reduction modes.
+@param src input 2D matrix.
+@param dst output vector. Its size and type is defined by dim and dtype parameters.
+@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
+a single row. 1 means that the matrix is reduced to a single column.
+@param rtype reduction operation that could be one of cv::ReduceTypes
+@param dtype when negative, the output vector will have the same type as the input matrix,
+otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
+@sa repeat
+*/
+CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
+
+/** @brief Creates one multi-channel array out of several single-channel ones.
+
+The function cv::merge merges several arrays to make a single multi-channel array. That is, each
+element of the output array will be a concatenation of the elements of the input arrays, where
+elements of i-th input array are treated as mv[i].channels()-element vectors.
+
+The function cv::split does the reverse operation. If you need to shuffle channels in some other
+advanced way, use cv::mixChannels.
+@param mv input array of matrices to be merged; all the matrices in mv must have the same
+size and the same depth.
+@param count number of input matrices when mv is a plain C array; it must be greater than zero.
+@param dst output array of the same size and the same depth as mv[0]; The number of channels will
+be equal to the parameter count.
+@sa mixChannels, split, Mat::reshape
+*/
+CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
+
+/** @overload
+@param mv input vector of matrices to be merged; all the matrices in mv must have the same
+size and the same depth.
+@param dst output array of the same size and the same depth as mv[0]; The number of channels will
+be the total number of channels in the matrix array.
+ */
+CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
+
+/** @brief Divides a multi-channel array into several single-channel arrays.
+
+The function cv::split splits a multi-channel array into separate single-channel arrays:
+\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
+If you need to extract a single channel or do some other sophisticated channel permutation, use
+mixChannels .
+@param src input multi-channel array.
+@param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
+reallocated, if needed.
+@sa merge, mixChannels, cvtColor
+*/
+CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
+
+/** @overload
+@param m input multi-channel array.
+@param mv output vector of arrays; the arrays themselves are reallocated, if needed.
+*/
+CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
+
+/** @brief Copies specified channels from input arrays to the specified channels of
+output arrays.
+
+The function cv::mixChannels provides an advanced mechanism for shuffling image channels.
+
+cv::split,cv::merge,cv::extractChannel,cv::insertChannel and some forms of cv::cvtColor are partial cases of cv::mixChannels.
+
+In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R
+channels swapped) and a separate alpha-channel image:
+@code{.cpp}
+ Mat bgra( 100, 100, CV_8UC4, Scalar(255,0,0,255) );
+ Mat bgr( bgra.rows, bgra.cols, CV_8UC3 );
+ Mat alpha( bgra.rows, bgra.cols, CV_8UC1 );
+
+ // forming an array of matrices is a quite efficient operation,
+ // because the matrix data is not copied, only the headers
+ Mat out[] = { bgr, alpha };
+ // bgra[0] -> bgr[2], bgra[1] -> bgr[1],
+ // bgra[2] -> bgr[0], bgra[3] -> alpha[0]
+ int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
+ mixChannels( &bgra, 1, out, 2, from_to, 4 );
+@endcode
+@note Unlike many other new-style C++ functions in OpenCV (see the introduction section and
+Mat::create ), cv::mixChannels requires the output arrays to be pre-allocated before calling the
+function.
+@param src input array or vector of matrices; all of the matrices must have the same size and the
+same depth.
+@param nsrcs number of matrices in `src`.
+@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
+depth must be the same as in `src[0]`.
+@param ndsts number of matrices in `dst`.
+@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
+a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
+dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
+src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
+src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
+channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
+filled with zero .
+@param npairs number of index pairs in `fromTo`.
+@sa split, merge, extractChannel, insertChannel, cvtColor
+*/
+CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
+ const int* fromTo, size_t npairs);
+
+/** @overload
+@param src input array or vector of matrices; all of the matrices must have the same size and the
+same depth.
+@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
+depth must be the same as in src[0].
+@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
+a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
+dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
+src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
+src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
+channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
+filled with zero .
+@param npairs number of index pairs in fromTo.
+*/
+CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
+ const int* fromTo, size_t npairs);
+
+/** @overload
+@param src input array or vector of matrices; all of the matrices must have the same size and the
+same depth.
+@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
+depth must be the same as in src[0].
+@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
+a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
+dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
+src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
+src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
+channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
+filled with zero .
+*/
+CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
+ const std::vector<int>& fromTo);
+
+/** @brief Extracts a single channel from src (coi is 0-based index)
+@param src input array
+@param dst output array
+@param coi index of channel to extract
+@sa mixChannels, split
+*/
+CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
+
+/** @brief Inserts a single channel to dst (coi is 0-based index)
+@param src input array
+@param dst output array
+@param coi index of channel for insertion
+@sa mixChannels, merge
+*/
+CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
+
+/** @brief Flips a 2D array around vertical, horizontal, or both axes.
+
+The function cv::flip flips the array in one of three different ways (row
+and column indices are 0-based):
+\f[\texttt{dst} _{ij} =
+\left\{
+\begin{array}{l l}
+\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
+\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
+\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
+\end{array}
+\right.\f]
+The example scenarios of using the function are the following:
+* Vertical flipping of the image (flipCode == 0) to switch between
+ top-left and bottom-left image origin. This is a typical operation
+ in video processing on Microsoft Windows\* OS.
+* Horizontal flipping of the image with the subsequent horizontal
+ shift and absolute difference calculation to check for a
+ vertical-axis symmetry (flipCode \> 0).
+* Simultaneous horizontal and vertical flipping of the image with
+ the subsequent shift and absolute difference calculation to check
+ for a central symmetry (flipCode \< 0).
+* Reversing the order of point arrays (flipCode \> 0 or
+ flipCode == 0).
+@param src input array.
+@param dst output array of the same size and type as src.
+@param flipCode a flag to specify how to flip the array; 0 means
+flipping around the x-axis and positive value (for example, 1) means
+flipping around y-axis. Negative value (for example, -1) means flipping
+around both axes.
+@sa transpose , repeat , completeSymm
+*/
+CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
+
+enum RotateFlags {
+ ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise
+ ROTATE_180 = 1, //Rotate 180 degrees clockwise
+ ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise
+};
+/** @brief Rotates a 2D array in multiples of 90 degrees.
+The function rotate rotates the array in one of three different ways:
+* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
+* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
+* Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
+@param src input array.
+@param dst output array of the same type as src. The size is the same with ROTATE_180,
+and the rows and cols are switched for ROTATE_90 and ROTATE_270.
+@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
+@sa transpose , repeat , completeSymm, flip, RotateFlags
+*/
+CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode);
+
+/** @brief Fills the output array with repeated copies of the input array.
+
+The function cv::repeat duplicates the input array one or more times along each of the two axes:
+\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
+The second variant of the function is more convenient to use with @ref MatrixExpressions.
+@param src input array to replicate.
+@param ny Flag to specify how many times the `src` is repeated along the
+vertical axis.
+@param nx Flag to specify how many times the `src` is repeated along the
+horizontal axis.
+@param dst output array of the same type as `src`.
+@sa cv::reduce
+*/
+CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
+
+/** @overload
+@param src input array to replicate.
+@param ny Flag to specify how many times the `src` is repeated along the
+vertical axis.
+@param nx Flag to specify how many times the `src` is repeated along the
+horizontal axis.
+ */
+CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
+
+/** @brief Applies horizontal concatenation to given matrices.
+
+The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows).
+@code{.cpp}
+ cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
+ cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
+ cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
+
+ cv::Mat out;
+ cv::hconcat( matArray, 3, out );
+ //out:
+ //[1, 2, 3;
+ // 1, 2, 3;
+ // 1, 2, 3;
+ // 1, 2, 3]
+@endcode
+@param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
+@param nsrc number of matrices in src.
+@param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
+@sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray)
+*/
+CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
+/** @overload
+ @code{.cpp}
+ cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4,
+ 2, 5,
+ 3, 6);
+ cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10,
+ 8, 11,
+ 9, 12);
+
+ cv::Mat C;
+ cv::hconcat(A, B, C);
+ //C:
+ //[1, 4, 7, 10;
+ // 2, 5, 8, 11;
+ // 3, 6, 9, 12]
+ @endcode
+ @param src1 first input array to be considered for horizontal concatenation.
+ @param src2 second input array to be considered for horizontal concatenation.
+ @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
+ */
+CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+ @code{.cpp}
+ std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
+ cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
+ cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
+
+ cv::Mat out;
+ cv::hconcat( matrices, out );
+ //out:
+ //[1, 2, 3;
+ // 1, 2, 3;
+ // 1, 2, 3;
+ // 1, 2, 3]
+ @endcode
+ @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
+ @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
+same depth.
+ */
+CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
+
+/** @brief Applies vertical concatenation to given matrices.
+
+The function vertically concatenates two or more cv::Mat matrices (with the same number of cols).
+@code{.cpp}
+ cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
+ cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
+ cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
+
+ cv::Mat out;
+ cv::vconcat( matArray, 3, out );
+ //out:
+ //[1, 1, 1, 1;
+ // 2, 2, 2, 2;
+ // 3, 3, 3, 3]
+@endcode
+@param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth.
+@param nsrc number of matrices in src.
+@param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
+@sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray)
+*/
+CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
+/** @overload
+ @code{.cpp}
+ cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7,
+ 2, 8,
+ 3, 9);
+ cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10,
+ 5, 11,
+ 6, 12);
+
+ cv::Mat C;
+ cv::vconcat(A, B, C);
+ //C:
+ //[1, 7;
+ // 2, 8;
+ // 3, 9;
+ // 4, 10;
+ // 5, 11;
+ // 6, 12]
+ @endcode
+ @param src1 first input array to be considered for vertical concatenation.
+ @param src2 second input array to be considered for vertical concatenation.
+ @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
+ */
+CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+ @code{.cpp}
+ std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
+ cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
+ cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
+
+ cv::Mat out;
+ cv::vconcat( matrices, out );
+ //out:
+ //[1, 1, 1, 1;
+ // 2, 2, 2, 2;
+ // 3, 3, 3, 3]
+ @endcode
+ @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
+ @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
+same depth.
+ */
+CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
+
+/** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
+Calculates the per-element bit-wise conjunction of two arrays or an
+array and a scalar.
+
+The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
+* Two arrays when src1 and src2 have the same size:
+ \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+* An array and a scalar when src2 is constructed from Scalar or has
+ the same number of elements as `src1.channels()`:
+ \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
+* A scalar and an array when src1 is constructed from Scalar or has
+ the same number of elements as `src2.channels()`:
+ \f[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+In case of floating-point arrays, their machine-specific bit
+representations (usually IEEE754-compliant) are used for the operation.
+In case of multi-channel arrays, each channel is processed
+independently. In the second and third cases above, the scalar is first
+converted to the array type.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as the input
+arrays.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
+ OutputArray dst, InputArray mask = noArray());
+
+/** @brief Calculates the per-element bit-wise disjunction of two arrays or an
+array and a scalar.
+
+The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
+* Two arrays when src1 and src2 have the same size:
+ \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+* An array and a scalar when src2 is constructed from Scalar or has
+ the same number of elements as `src1.channels()`:
+ \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
+* A scalar and an array when src1 is constructed from Scalar or has
+ the same number of elements as `src2.channels()`:
+ \f[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+In case of floating-point arrays, their machine-specific bit
+representations (usually IEEE754-compliant) are used for the operation.
+In case of multi-channel arrays, each channel is processed
+independently. In the second and third cases above, the scalar is first
+converted to the array type.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as the input
+arrays.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
+ OutputArray dst, InputArray mask = noArray());
+
+/** @brief Calculates the per-element bit-wise "exclusive or" operation on two
+arrays or an array and a scalar.
+
+The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
+operation for:
+* Two arrays when src1 and src2 have the same size:
+ \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+* An array and a scalar when src2 is constructed from Scalar or has
+ the same number of elements as `src1.channels()`:
+ \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
+* A scalar and an array when src1 is constructed from Scalar or has
+ the same number of elements as `src2.channels()`:
+ \f[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
+In case of floating-point arrays, their machine-specific bit
+representations (usually IEEE754-compliant) are used for the operation.
+In case of multi-channel arrays, each channel is processed
+independently. In the 2nd and 3rd cases above, the scalar is first
+converted to the array type.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as the input
+arrays.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
+ OutputArray dst, InputArray mask = noArray());
+
+/** @brief Inverts every bit of an array.
+
+The function cv::bitwise_not calculates per-element bit-wise inversion of the input
+array:
+\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
+In case of a floating-point input array, its machine-specific bit
+representation (usually IEEE754-compliant) is used for the operation. In
+case of multi-channel arrays, each channel is processed independently.
+@param src input array.
+@param dst output array that has the same size and type as the input
+array.
+@param mask optional operation mask, 8-bit single channel array, that
+specifies elements of the output array to be changed.
+*/
+CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
+ InputArray mask = noArray());
+
+/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
+
+The function cv::absdiff calculates:
+* Absolute difference between two arrays when they have the same
+ size and type:
+ \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
+* Absolute difference between an array and a scalar when the second
+ array is constructed from Scalar or has as many elements as the
+ number of channels in `src1`:
+ \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f]
+* Absolute difference between a scalar and an array when the first
+ array is constructed from Scalar or has as many elements as the
+ number of channels in `src2`:
+ \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f]
+ where I is a multi-dimensional index of array elements. In case of
+ multi-channel arrays, each channel is processed independently.
+@note Saturation is not applied when the arrays have the depth CV_32S.
+You may even get a negative value in the case of overflow.
+@param src1 first input array or a scalar.
+@param src2 second input array or a scalar.
+@param dst output array that has the same size and type as input arrays.
+@sa cv::abs(const Mat&)
+*/
+CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
+
+/** @brief Checks if array elements lie between the elements of two other arrays.
+
+The function checks the range as follows:
+- For every element of a single-channel input array:
+ \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f]
+- For two-channel arrays:
+ \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f]
+- and so forth.
+
+That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
+specified 1D, 2D, 3D, ... box and 0 otherwise.
+
+When the lower and/or upper boundary parameters are scalars, the indexes
+(I) at lowerb and upperb in the above formulas should be omitted.
+@param src first input array.
+@param lowerb inclusive lower boundary array or a scalar.
+@param upperb inclusive upper boundary array or a scalar.
+@param dst output array of the same size as src and CV_8U type.
+*/
+CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
+ InputArray upperb, OutputArray dst);
+
+/** @brief Performs the per-element comparison of two arrays or an array and scalar value.
+
+The function compares:
+* Elements of two arrays when src1 and src2 have the same size:
+ \f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f]
+* Elements of src1 with a scalar src2 when src2 is constructed from
+ Scalar or has a single element:
+ \f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f]
+* src1 with elements of src2 when src1 is constructed from Scalar or
+ has a single element:
+ \f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f]
+When the comparison result is true, the corresponding element of output
+array is set to 255. The comparison operations can be replaced with the
+equivalent matrix expressions:
+@code{.cpp}
+ Mat dst1 = src1 >= src2;
+ Mat dst2 = src1 < 8;
+ ...
+@endcode
+@param src1 first input array or a scalar; when it is an array, it must have a single channel.
+@param src2 second input array or a scalar; when it is an array, it must have a single channel.
+@param dst output array of type ref CV_8U that has the same size and the same number of channels as
+ the input arrays.
+@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
+@sa checkRange, min, max, threshold
+*/
+CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
+
+/** @brief Calculates per-element minimum of two arrays or an array and a scalar.
+
+The function cv::min calculates the per-element minimum of two arrays:
+\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
+or array and a scalar:
+\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
+@param src1 first input array.
+@param src2 second input array of the same size and type as src1.
+@param dst output array of the same size and type as src1.
+@sa max, compare, inRange, minMaxLoc
+*/
+CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
+
+/** @brief Calculates per-element maximum of two arrays or an array and a scalar.
+
+The function cv::max calculates the per-element maximum of two arrays:
+\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
+or array and a scalar:
+\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
+@param src1 first input array.
+@param src2 second input array of the same size and type as src1 .
+@param dst output array of the same size and type as src1.
+@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions
+*/
+CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
+/** @overload
+needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
+*/
+CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
+
+/** @brief Calculates a square root of array elements.
+
+The function cv::sqrt calculates a square root of each input array element.
+In case of multi-channel arrays, each channel is processed
+independently. The accuracy is approximately the same as of the built-in
+std::sqrt .
+@param src input floating-point array.
+@param dst output array of the same size and type as src.
+*/
+CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
+
+/** @brief Raises every array element to a power.
+
+The function cv::pow raises every element of the input array to power :
+\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
+
+So, for a non-integer power exponent, the absolute values of input array
+elements are used. However, it is possible to get true values for
+negative values using some extra operations. In the example below,
+computing the 5th root of array src shows:
+@code{.cpp}
+ Mat mask = src < 0;
+ pow(src, 1./5, dst);
+ subtract(Scalar::all(0), dst, dst, mask);
+@endcode
+For some values of power, such as integer values, 0.5 and -0.5,
+specialized faster algorithms are used.
+
+Special values (NaN, Inf) are not handled.
+@param src input array.
+@param power exponent of power.
+@param dst output array of the same size and type as src.
+@sa sqrt, exp, log, cartToPolar, polarToCart
+*/
+CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
+
+/** @brief Calculates the exponent of every array element.
+
+The function cv::exp calculates the exponent of every element of the input
+array:
+\f[\texttt{dst} [I] = e^{ src(I) }\f]
+
+The maximum relative error is about 7e-6 for single-precision input and
+less than 1e-10 for double-precision input. Currently, the function
+converts denormalized values to zeros on output. Special values (NaN,
+Inf) are not handled.
+@param src input array.
+@param dst output array of the same size and type as src.
+@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
+*/
+CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
+
+/** @brief Calculates the natural logarithm of every array element.
+
+The function cv::log calculates the natural logarithm of every element of the input array:
+\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f]
+
+Output on zero, negative and special (NaN, Inf) values is undefined.
+
+@param src input array.
+@param dst output array of the same size and type as src .
+@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
+*/
+CV_EXPORTS_W void log(InputArray src, OutputArray dst);
+
+/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
+
+The function cv::polarToCart calculates the Cartesian coordinates of each 2D
+vector represented by the corresponding elements of magnitude and angle:
+\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
+
+The relative accuracy of the estimated coordinates is about 1e-6.
+@param magnitude input floating-point array of magnitudes of 2D vectors;
+it can be an empty matrix (=Mat()), in this case, the function assumes
+that all the magnitudes are =1; if it is not empty, it must have the
+same size and type as angle.
+@param angle input floating-point array of angles of 2D vectors.
+@param x output array of x-coordinates of 2D vectors; it has the same
+size and type as angle.
+@param y output array of y-coordinates of 2D vectors; it has the same
+size and type as angle.
+@param angleInDegrees when true, the input angles are measured in
+degrees, otherwise, they are measured in radians.
+@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
+*/
+CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
+ OutputArray x, OutputArray y, bool angleInDegrees = false);
+
+/** @brief Calculates the magnitude and angle of 2D vectors.
+
+The function cv::cartToPolar calculates either the magnitude, angle, or both
+for every 2D vector (x(I),y(I)):
+\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
+
+The angles are calculated with accuracy about 0.3 degrees. For the point
+(0,0), the angle is set to 0.
+@param x array of x-coordinates; this must be a single-precision or
+double-precision floating-point array.
+@param y array of y-coordinates, that must have the same size and same type as x.
+@param magnitude output array of magnitudes of the same size and type as x.
+@param angle output array of angles that has the same size and type as
+x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
+@param angleInDegrees a flag, indicating whether the angles are measured
+in radians (which is by default), or in degrees.
+@sa Sobel, Scharr
+*/
+CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
+ OutputArray magnitude, OutputArray angle,
+ bool angleInDegrees = false);
+
+/** @brief Calculates the rotation angle of 2D vectors.
+
+The function cv::phase calculates the rotation angle of each 2D vector that
+is formed from the corresponding elements of x and y :
+\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
+
+The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
+the corresponding angle(I) is set to 0.
+@param x input floating-point array of x-coordinates of 2D vectors.
+@param y input array of y-coordinates of 2D vectors; it must have the
+same size and the same type as x.
+@param angle output array of vector angles; it has the same size and
+same type as x .
+@param angleInDegrees when true, the function calculates the angle in
+degrees, otherwise, they are measured in radians.
+*/
+CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
+ bool angleInDegrees = false);
+
+/** @brief Calculates the magnitude of 2D vectors.
+
+The function cv::magnitude calculates the magnitude of 2D vectors formed
+from the corresponding elements of x and y arrays:
+\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
+@param x floating-point array of x-coordinates of the vectors.
+@param y floating-point array of y-coordinates of the vectors; it must
+have the same size as x.
+@param magnitude output array of the same size and type as x.
+@sa cartToPolar, polarToCart, phase, sqrt
+*/
+CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
+
+/** @brief Checks every element of an input array for invalid values.
+
+The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \>
+-DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
+maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
+are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
+function either returns false (when quiet=true) or throws an exception.
+@param a input array.
+@param quiet a flag, indicating whether the functions quietly return false when the array elements
+are out of range or they throw an exception.
+@param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
+elements.
+@param minVal inclusive lower boundary of valid values range.
+@param maxVal exclusive upper boundary of valid values range.
+*/
+CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
+ double minVal = -DBL_MAX, double maxVal = DBL_MAX);
+
+/** @brief converts NaN's to the given number
+*/
+CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
+
+/** @brief Performs generalized matrix multiplication.
+
+The function cv::gemm performs generalized matrix multiplication similar to the
+gemm functions in BLAS level 3. For example,
+`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
+corresponds to
+\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
+
+In case of complex (two-channel) data, performed a complex matrix
+multiplication.
+
+The function can be replaced with a matrix expression. For example, the
+above call can be replaced with:
+@code{.cpp}
+ dst = alpha*src1.t()*src2 + beta*src3.t();
+@endcode
+@param src1 first multiplied input matrix that could be real(CV_32FC1,
+CV_64FC1) or complex(CV_32FC2, CV_64FC2).
+@param src2 second multiplied input matrix of the same type as src1.
+@param alpha weight of the matrix product.
+@param src3 third optional delta matrix added to the matrix product; it
+should have the same type as src1 and src2.
+@param beta weight of src3.
+@param dst output matrix; it has the proper size and the same type as
+input matrices.
+@param flags operation flags (cv::GemmFlags)
+@sa mulTransposed , transform
+*/
+CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
+ InputArray src3, double beta, OutputArray dst, int flags = 0);
+
+/** @brief Calculates the product of a matrix and its transposition.
+
+The function cv::mulTransposed calculates the product of src and its
+transposition:
+\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
+if aTa=true , and
+\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
+otherwise. The function is used to calculate the covariance matrix. With
+zero delta, it can be used as a faster substitute for general matrix
+product A\*B when B=A'
+@param src input single-channel matrix. Note that unlike gemm, the
+function can multiply not only floating-point matrices.
+@param dst output square matrix.
+@param aTa Flag specifying the multiplication ordering. See the
+description below.
+@param delta Optional delta matrix subtracted from src before the
+multiplication. When the matrix is empty ( delta=noArray() ), it is
+assumed to be zero, that is, nothing is subtracted. If it has the same
+size as src , it is simply subtracted. Otherwise, it is "repeated" (see
+repeat ) to cover the full src and then subtracted. Type of the delta
+matrix, when it is not empty, must be the same as the type of created
+output matrix. See the dtype parameter description below.
+@param scale Optional scale factor for the matrix product.
+@param dtype Optional type of the output matrix. When it is negative,
+the output matrix will have the same type as src . Otherwise, it will be
+type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
+@sa calcCovarMatrix, gemm, repeat, reduce
+*/
+CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
+ InputArray delta = noArray(),
+ double scale = 1, int dtype = -1 );
+
+/** @brief Transposes a matrix.
+
+The function cv::transpose transposes the matrix src :
+\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
+@note No complex conjugation is done in case of a complex matrix. It it
+should be done separately if needed.
+@param src input array.
+@param dst output array of the same type as src.
+*/
+CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
+
+/** @brief Performs the matrix transformation of every array element.
+
+The function cv::transform performs the matrix transformation of every
+element of the array src and stores the results in dst :
+\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
+(when m.cols=src.channels() ), or
+\f[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
+(when m.cols=src.channels()+1 )
+
+Every element of the N -channel array src is interpreted as N -element
+vector that is transformed using the M x N or M x (N+1) matrix m to
+M-element vector - the corresponding element of the output array dst .
+
+The function may be used for geometrical transformation of
+N -dimensional points, arbitrary linear color space transformation (such
+as various kinds of RGB to YUV transforms), shuffling the image
+channels, and so forth.
+@param src input array that must have as many channels (1 to 4) as
+m.cols or m.cols-1.
+@param dst output array of the same size and depth as src; it has as
+many channels as m.rows.
+@param m transformation 2x2 or 2x3 floating-point matrix.
+@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
+*/
+CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
+
+/** @brief Performs the perspective matrix transformation of vectors.
+
+The function cv::perspectiveTransform transforms every element of src by
+treating it as a 2D or 3D vector, in the following way:
+\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
+where
+\f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f]
+and
+\f[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
+
+Here a 3D vector transformation is shown. In case of a 2D vector
+transformation, the z component is omitted.
+
+@note The function transforms a sparse set of 2D or 3D vectors. If you
+want to transform an image using perspective transformation, use
+warpPerspective . If you have an inverse problem, that is, you want to
+compute the most probable perspective transformation out of several
+pairs of corresponding points, you can use getPerspectiveTransform or
+findHomography .
+@param src input two-channel or three-channel floating-point array; each
+element is a 2D/3D vector to be transformed.
+@param dst output array of the same size and type as src.
+@param m 3x3 or 4x4 floating-point transformation matrix.
+@sa transform, warpPerspective, getPerspectiveTransform, findHomography
+*/
+CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
+
+/** @brief Copies the lower or the upper half of a square matrix to another half.
+
+The function cv::completeSymm copies the lower half of a square matrix to
+its another half. The matrix diagonal remains unchanged:
+* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
+ lowerToUpper=false
+* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if
+ lowerToUpper=true
+@param mtx input-output floating-point square matrix.
+@param lowerToUpper operation flag; if true, the lower half is copied to
+the upper half. Otherwise, the upper half is copied to the lower half.
+@sa flip, transpose
+*/
+CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
+
+/** @brief Initializes a scaled identity matrix.
+
+The function cv::setIdentity initializes a scaled identity matrix:
+\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
+
+The function can also be emulated using the matrix initializers and the
+matrix expressions:
+@code
+ Mat A = Mat::eye(4, 3, CV_32F)*5;
+ // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
+@endcode
+@param mtx matrix to initialize (not necessarily square).
+@param s value to assign to diagonal elements.
+@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
+*/
+CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
+
+/** @brief Returns the determinant of a square floating-point matrix.
+
+The function cv::determinant calculates and returns the determinant of the
+specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
+direct method is used. For larger matrices, the function uses LU
+factorization with partial pivoting.
+
+For symmetric positively-determined matrices, it is also possible to use
+eigen decomposition to calculate the determinant.
+@param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
+square size.
+@sa trace, invert, solve, eigen, @ref MatrixExpressions
+*/
+CV_EXPORTS_W double determinant(InputArray mtx);
+
+/** @brief Returns the trace of a matrix.
+
+The function cv::trace returns the sum of the diagonal elements of the
+matrix mtx .
+\f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f]
+@param mtx input matrix.
+*/
+CV_EXPORTS_W Scalar trace(InputArray mtx);
+
+/** @brief Finds the inverse or pseudo-inverse of a matrix.
+
+The function cv::invert inverts the matrix src and stores the result in dst
+. When the matrix src is singular or non-square, the function calculates
+the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
+minimal, where I is an identity matrix.
+
+In case of the DECOMP_LU method, the function returns non-zero value if
+the inverse has been successfully calculated and 0 if src is singular.
+
+In case of the DECOMP_SVD method, the function returns the inverse
+condition number of src (the ratio of the smallest singular value to the
+largest singular value) and 0 if src is singular. The SVD method
+calculates a pseudo-inverse matrix if src is singular.
+
+Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
+non-singular square matrices that should also be symmetrical and
+positively defined. In this case, the function stores the inverted
+matrix in dst and returns non-zero. Otherwise, it returns 0.
+
+@param src input floating-point M x N matrix.
+@param dst output matrix of N x M size and the same type as src.
+@param flags inversion method (cv::DecompTypes)
+@sa solve, SVD
+*/
+CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
+
+/** @brief Solves one or more linear systems or least-squares problems.
+
+The function cv::solve solves a linear system or least-squares problem (the
+latter is possible with SVD or QR methods, or by specifying the flag
+DECOMP_NORMAL ):
+\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
+
+If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
+if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
+it returns 0. In the latter case, dst is not valid. Other methods find a
+pseudo-solution in case of a singular left-hand side part.
+
+@note If you want to find a unity-norm solution of an under-defined
+singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
+will not do the work. Use SVD::solveZ instead.
+
+@param src1 input matrix on the left-hand side of the system.
+@param src2 input matrix on the right-hand side of the system.
+@param dst output solution.
+@param flags solution (matrix inversion) method (cv::DecompTypes)
+@sa invert, SVD, eigen
+*/
+CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
+ OutputArray dst, int flags = DECOMP_LU);
+
+/** @brief Sorts each row or each column of a matrix.
+
+The function cv::sort sorts each matrix row or each matrix column in
+ascending or descending order. So you should pass two operation flags to
+get desired behaviour. If you want to sort matrix rows or columns
+lexicographically, you can use STL std::sort generic function with the
+proper comparison predicate.
+
+@param src input single-channel array.
+@param dst output array of the same size and type as src.
+@param flags operation flags, a combination of cv::SortFlags
+@sa sortIdx, randShuffle
+*/
+CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
+
+/** @brief Sorts each row or each column of a matrix.
+
+The function cv::sortIdx sorts each matrix row or each matrix column in the
+ascending or descending order. So you should pass two operation flags to
+get desired behaviour. Instead of reordering the elements themselves, it
+stores the indices of sorted elements in the output array. For example:
+@code
+ Mat A = Mat::eye(3,3,CV_32F), B;
+ sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
+ // B will probably contain
+ // (because of equal elements in A some permutations are possible):
+ // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
+@endcode
+@param src input single-channel array.
+@param dst output integer array of the same size as src.
+@param flags operation flags that could be a combination of cv::SortFlags
+@sa sort, randShuffle
+*/
+CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
+
+/** @brief Finds the real roots of a cubic equation.
+
+The function solveCubic finds the real roots of a cubic equation:
+- if coeffs is a 4-element vector:
+\f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f]
+- if coeffs is a 3-element vector:
+\f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f]
+
+The roots are stored in the roots array.
+@param coeffs equation coefficients, an array of 3 or 4 elements.
+@param roots output array of real roots that has 1 or 3 elements.
+*/
+CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
+
+/** @brief Finds the real or complex roots of a polynomial equation.
+
+The function cv::solvePoly finds real and complex roots of a polynomial equation:
+\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
+@param coeffs array of polynomial coefficients.
+@param roots output (complex) array of roots.
+@param maxIters maximum number of iterations the algorithm does.
+*/
+CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
+
+/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
+
+The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
+matrix src:
+@code
+ src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
+@endcode
+@note in the new and the old interfaces different ordering of eigenvalues and eigenvectors
+parameters is used.
+@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
+(src ^T^ == src).
+@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
+in the descending order.
+@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
+eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
+eigenvalues.
+@sa completeSymm , PCA
+*/
+CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
+ OutputArray eigenvectors = noArray());
+
+/** @brief Calculates the covariance matrix of a set of vectors.
+
+The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of
+the set of input vectors.
+@param samples samples stored as separate matrices
+@param nsamples number of samples
+@param covar output covariance matrix of the type ctype and square size.
+@param mean input or output (depending on the flags) array as the average value of the input vectors.
+@param flags operation flags as a combination of cv::CovarFlags
+@param ctype type of the matrixl; it equals 'CV_64F' by default.
+@sa PCA, mulTransposed, Mahalanobis
+@todo InputArrayOfArrays
+*/
+CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
+ int flags, int ctype = CV_64F);
+
+/** @overload
+@note use cv::COVAR_ROWS or cv::COVAR_COLS flag
+@param samples samples stored as rows/columns of a single matrix.
+@param covar output covariance matrix of the type ctype and square size.
+@param mean input or output (depending on the flags) array as the average value of the input vectors.
+@param flags operation flags as a combination of cv::CovarFlags
+@param ctype type of the matrixl; it equals 'CV_64F' by default.
+*/
+CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
+ InputOutputArray mean, int flags, int ctype = CV_64F);
+
+/** wrap PCA::operator() */
+CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
+ OutputArray eigenvectors, int maxComponents = 0);
+
+/** wrap PCA::operator() */
+CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
+ OutputArray eigenvectors, double retainedVariance);
+
+/** wrap PCA::project */
+CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
+ InputArray eigenvectors, OutputArray result);
+
+/** wrap PCA::backProject */
+CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
+ InputArray eigenvectors, OutputArray result);
+
+/** wrap SVD::compute */
+CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
+
+/** wrap SVD::backSubst */
+CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
+ InputArray rhs, OutputArray dst );
+
+/** @brief Calculates the Mahalanobis distance between two vectors.
+
+The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
+\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
+The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
+the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
+@param v1 first 1D input vector.
+@param v2 second 1D input vector.
+@param icovar inverse covariance matrix.
+*/
+CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
+
+/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
+
+The function cv::dft performs one of the following:
+- Forward the Fourier transform of a 1D vector of N elements:
+ \f[Y = F^{(N)} \cdot X,\f]
+ where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
+- Inverse the Fourier transform of a 1D vector of N elements:
+ \f[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f]
+ where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
+- Forward the 2D Fourier transform of a M x N matrix:
+ \f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f]
+- Inverse the 2D Fourier transform of a M x N matrix:
+ \f[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f]
+
+In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
+spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
+(complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
+is how 2D *CCS* spectrum looks:
+\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
+
+In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
+
+So, the function chooses an operation mode depending on the flags and size of the input array:
+- If DFT_ROWS is set or the input array has a single row or single column, the function
+ performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
+ Otherwise, it performs a 2D transform.
+- If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
+ 2D transform:
+ - When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
+ input.
+ - When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
+ input. In case of 2D transform, it uses the packed format as shown above. In case of a
+ single 1D transform, it looks like the first row of the matrix above. In case of
+ multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
+ looks like the first row of the matrix above.
+- If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
+ output is a complex array of the same size as input. The function performs a forward or
+ inverse 1D or 2D transform of the whole input array or each row of the input array
+ independently, depending on the flags DFT_INVERSE and DFT_ROWS.
+- When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
+ is set, the output is a real array of the same size as input. The function performs a 1D or 2D
+ inverse transformation of the whole input array or each individual row, depending on the flags
+ DFT_INVERSE and DFT_ROWS.
+
+If DFT_SCALE is set, the scaling is done after the transformation.
+
+Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
+efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
+current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
+method.
+
+The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
+@code
+ void convolveDFT(InputArray A, InputArray B, OutputArray C)
+ {
+ // reallocate the output array if needed
+ C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
+ Size dftSize;
+ // calculate the size of DFT transform
+ dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
+ dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
+
+ // allocate temporary buffers and initialize them with 0's
+ Mat tempA(dftSize, A.type(), Scalar::all(0));
+ Mat tempB(dftSize, B.type(), Scalar::all(0));
+
+ // copy A and B to the top-left corners of tempA and tempB, respectively
+ Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
+ A.copyTo(roiA);
+ Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
+ B.copyTo(roiB);
+
+ // now transform the padded A & B in-place;
+ // use "nonzeroRows" hint for faster processing
+ dft(tempA, tempA, 0, A.rows);
+ dft(tempB, tempB, 0, B.rows);
+
+ // multiply the spectrums;
+ // the function handles packed spectrum representations well
+ mulSpectrums(tempA, tempB, tempA);
+
+ // transform the product back from the frequency domain.
+ // Even though all the result rows will be non-zero,
+ // you need only the first C.rows of them, and thus you
+ // pass nonzeroRows == C.rows
+ dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
+
+ // now copy the result back to C.
+ tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
+
+ // all the temporary buffers will be deallocated automatically
+ }
+@endcode
+To optimize this sample, consider the following approaches:
+- Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
+ the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
+ tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
+ rightmost columns of the matrices.
+- This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
+ is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
+ To do this, you need to split the output array C into multiple tiles. For each tile, estimate
+ which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
+ too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
+ each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
+ algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
+ there is also a slowdown because of bad cache locality. So, there is an optimal tile size
+ somewhere in the middle.
+- If different tiles in C can be calculated in parallel and, thus, the convolution is done by
+ parts, the loop can be threaded.
+
+All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
+using them, you can get the performance even better than with the above theoretically optimal
+implementation. Though, those two functions actually calculate cross-correlation, not convolution,
+so you need to "flip" the second convolution operand B vertically and horizontally using flip .
+@note
+- An example using the discrete fourier transform can be found at
+ opencv_source_code/samples/cpp/dft.cpp
+- (Python) An example using the dft functionality to perform Wiener deconvolution can be found
+ at opencv_source/samples/python/deconvolution.py
+- (Python) An example rearranging the quadrants of a Fourier image can be found at
+ opencv_source/samples/python/dft.py
+@param src input array that could be real or complex.
+@param dst output array whose size and type depends on the flags .
+@param flags transformation flags, representing a combination of the cv::DftFlags
+@param nonzeroRows when the parameter is not zero, the function assumes that only the first
+nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
+output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
+rows more efficiently and save some time; this technique is very useful for calculating array
+cross-correlation or convolution using DFT.
+@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
+magnitude , phase
+*/
+CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
+
+/** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
+
+idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
+@note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
+dft or idft explicitly to make these transforms mutually inverse.
+@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
+@param src input floating-point real or complex array.
+@param dst output array whose size and type depend on the flags.
+@param flags operation flags (see dft and cv::DftFlags).
+@param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
+the convolution sample in dft description.
+*/
+CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
+
+/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
+
+The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
+floating-point array:
+- Forward Cosine transform of a 1D vector of N elements:
+ \f[Y = C^{(N)} \cdot X\f]
+ where
+ \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
+ and
+ \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
+- Inverse Cosine transform of a 1D vector of N elements:
+ \f[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\f]
+ (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
+- Forward 2D Cosine transform of M x N matrix:
+ \f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\f]
+- Inverse 2D Cosine transform of M x N matrix:
+ \f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f]
+
+The function chooses the mode of operation by looking at the flags and size of the input array:
+- If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
+ is an inverse 1D or 2D transform.
+- If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
+- If the array is a single column or a single row, the function performs a 1D transform.
+- If none of the above is true, the function performs a 2D transform.
+
+@note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
+can pad the array when necessary.
+Also, the function performance depends very much, and not monotonically, on the array size (see
+getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
+of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
+@code
+ size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
+ N1 = getOptimalDCTSize(N);
+@endcode
+@param src input floating-point array.
+@param dst output array of the same size and type as src .
+@param flags transformation flags as a combination of cv::DftFlags (DCT_*)
+@sa dft , getOptimalDFTSize , idct
+*/
+CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
+
+/** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
+
+idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
+@param src input floating-point single-channel array.
+@param dst output array of the same size and type as src.
+@param flags operation flags.
+@sa dct, dft, idft, getOptimalDFTSize
+*/
+CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
+
+/** @brief Performs the per-element multiplication of two Fourier spectrums.
+
+The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
+matrices that are results of a real or complex Fourier transform.
+
+The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
+or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
+simply multiplied (per element) with an optional conjugation of the second-array elements. When the
+arrays are real, they are assumed to be CCS-packed (see dft for details).
+@param a first input array.
+@param b second input array of the same size and type as src1 .
+@param c output array of the same size and type as src1 .
+@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
+each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
+@param conjB optional flag that conjugates the second input array before the multiplication (true)
+or not (false).
+*/
+CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
+ int flags, bool conjB = false);
+
+/** @brief Returns the optimal DFT size for a given vector size.
+
+DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
+convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
+pad the input data with zeros to get a bit larger array that can be transformed much faster than the
+original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
+Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
+are also processed quite efficiently.
+
+The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
+so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
+= 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
+
+The function returns a negative number if vecsize is too large (very close to INT_MAX ).
+
+While the function cannot be used directly to estimate the optimal vector size for DCT transform
+(since the current DCT implementation supports only even-size vectors), it can be easily processed
+as getOptimalDFTSize((vecsize+1)/2)\*2.
+@param vecsize vector size.
+@sa dft , dct , idft , idct , mulSpectrums
+*/
+CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
+
+/** @brief Returns the default random number generator.
+
+The function cv::theRNG returns the default random number generator. For each thread, there is a
+separate random number generator, so you can use the function safely in multi-thread environments.
+If you just need to get a single random number using this generator or initialize an array, you can
+use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
+is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .
+@sa RNG, randu, randn
+*/
+CV_EXPORTS RNG& theRNG();
+
+/** @brief Sets state of default random number generator.
+
+The function cv::setRNGSeed sets state of default random number generator to custom value.
+@param seed new state for default random number generator
+@sa RNG, randu, randn
+*/
+CV_EXPORTS_W void setRNGSeed(int seed);
+
+/** @brief Generates a single uniformly-distributed random number or an array of random numbers.
+
+Non-template variant of the function fills the matrix dst with uniformly-distributed
+random numbers from the specified range:
+\f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f]
+@param dst output array of random numbers; the array must be pre-allocated.
+@param low inclusive lower boundary of the generated random numbers.
+@param high exclusive upper boundary of the generated random numbers.
+@sa RNG, randn, theRNG
+*/
+CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
+
+/** @brief Fills the array with normally distributed random numbers.
+
+The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
+mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
+value range of the output array data type.
+@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
+@param mean mean value (expectation) of the generated random numbers.
+@param stddev standard deviation of the generated random numbers; it can be either a vector (in
+which case a diagonal standard deviation matrix is assumed) or a square matrix.
+@sa RNG, randu
+*/
+CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
+
+/** @brief Shuffles the array elements randomly.
+
+The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
+swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
+@param dst input/output numerical 1D array.
+@param iterFactor scale factor that determines the number of random swap operations (see the details
+below).
+@param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
+instead.
+@sa RNG, sort
+*/
+CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
+
+/** @brief Principal Component Analysis
+
+The class is used to calculate a special basis for a set of vectors. The
+basis will consist of eigenvectors of the covariance matrix calculated
+from the input set of vectors. The class %PCA can also transform
+vectors to/from the new coordinate space defined by the basis. Usually,
+in this new coordinate system, each vector from the original set (and
+any linear combination of such vectors) can be quite accurately
+approximated by taking its first few components, corresponding to the
+eigenvectors of the largest eigenvalues of the covariance matrix.
+Geometrically it means that you calculate a projection of the vector to
+a subspace formed by a few eigenvectors corresponding to the dominant
+eigenvalues of the covariance matrix. And usually such a projection is
+very close to the original vector. So, you can represent the original
+vector from a high-dimensional space with a much shorter vector
+consisting of the projected vector's coordinates in the subspace. Such a
+transformation is also known as Karhunen-Loeve Transform, or KLT.
+See http://en.wikipedia.org/wiki/Principal_component_analysis
+
+The sample below is the function that takes two matrices. The first
+function stores a set of vectors (a row per vector) that is used to
+calculate PCA. The second function stores another "test" set of vectors
+(a row per vector). First, these vectors are compressed with PCA, then
+reconstructed back, and then the reconstruction error norm is computed
+and printed for each vector. :
+
+@code{.cpp}
+using namespace cv;
+
+PCA compressPCA(const Mat& pcaset, int maxComponents,
+ const Mat& testset, Mat& compressed)
+{
+ PCA pca(pcaset, // pass the data
+ Mat(), // we do not have a pre-computed mean vector,
+ // so let the PCA engine to compute it
+ PCA::DATA_AS_ROW, // indicate that the vectors
+ // are stored as matrix rows
+ // (use PCA::DATA_AS_COL if the vectors are
+ // the matrix columns)
+ maxComponents // specify, how many principal components to retain
+ );
+ // if there is no test data, just return the computed basis, ready-to-use
+ if( !testset.data )
+ return pca;
+ CV_Assert( testset.cols == pcaset.cols );
+
+ compressed.create(testset.rows, maxComponents, testset.type());
+
+ Mat reconstructed;
+ for( int i = 0; i < testset.rows; i++ )
+ {
+ Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
+ // compress the vector, the result will be stored
+ // in the i-th row of the output matrix
+ pca.project(vec, coeffs);
+ // and then reconstruct it
+ pca.backProject(coeffs, reconstructed);
+ // and measure the error
+ printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
+ }
+ return pca;
+}
+@endcode
+@sa calcCovarMatrix, mulTransposed, SVD, dft, dct
+*/
+class CV_EXPORTS PCA
+{
+public:
+ enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows
+ DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns
+ USE_AVG = 2 //!
+ };
+
+ /** @brief default constructor
+
+ The default constructor initializes an empty %PCA structure. The other
+ constructors initialize the structure and call PCA::operator()().
+ */
+ PCA();
+
+ /** @overload
+ @param data input samples stored as matrix rows or matrix columns.
+ @param mean optional mean value; if the matrix is empty (@c noArray()),
+ the mean is computed from the data.
+ @param flags operation flags; currently the parameter is only used to
+ specify the data layout (PCA::Flags)
+ @param maxComponents maximum number of components that %PCA should
+ retain; by default, all the components are retained.
+ */
+ PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
+
+ /** @overload
+ @param data input samples stored as matrix rows or matrix columns.
+ @param mean optional mean value; if the matrix is empty (noArray()),
+ the mean is computed from the data.
+ @param flags operation flags; currently the parameter is only used to
+ specify the data layout (PCA::Flags)
+ @param retainedVariance Percentage of variance that PCA should retain.
+ Using this parameter will let the PCA decided how many components to
+ retain but it will always keep at least 2.
+ */
+ PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
+
+ /** @brief performs %PCA
+
+ The operator performs %PCA of the supplied dataset. It is safe to reuse
+ the same PCA structure for multiple datasets. That is, if the structure
+ has been previously used with another dataset, the existing internal
+ data is reclaimed and the new @ref eigenvalues, @ref eigenvectors and @ref
+ mean are allocated and computed.
+
+ The computed @ref eigenvalues are sorted from the largest to the smallest and
+ the corresponding @ref eigenvectors are stored as eigenvectors rows.
+
+ @param data input samples stored as the matrix rows or as the matrix
+ columns.
+ @param mean optional mean value; if the matrix is empty (noArray()),
+ the mean is computed from the data.
+ @param flags operation flags; currently the parameter is only used to
+ specify the data layout. (Flags)
+ @param maxComponents maximum number of components that PCA should
+ retain; by default, all the components are retained.
+ */
+ PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
+
+ /** @overload
+ @param data input samples stored as the matrix rows or as the matrix
+ columns.
+ @param mean optional mean value; if the matrix is empty (noArray()),
+ the mean is computed from the data.
+ @param flags operation flags; currently the parameter is only used to
+ specify the data layout. (PCA::Flags)
+ @param retainedVariance Percentage of variance that %PCA should retain.
+ Using this parameter will let the %PCA decided how many components to
+ retain but it will always keep at least 2.
+ */
+ PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
+
+ /** @brief Projects vector(s) to the principal component subspace.
+
+ The methods project one or more vectors to the principal component
+ subspace, where each vector projection is represented by coefficients in
+ the principal component basis. The first form of the method returns the
+ matrix that the second form writes to the result. So the first form can
+ be used as a part of expression while the second form can be more
+ efficient in a processing loop.
+ @param vec input vector(s); must have the same dimensionality and the
+ same layout as the input data used at %PCA phase, that is, if
+ DATA_AS_ROW are specified, then `vec.cols==data.cols`
+ (vector dimensionality) and `vec.rows` is the number of vectors to
+ project, and the same is true for the PCA::DATA_AS_COL case.
+ */
+ Mat project(InputArray vec) const;
+
+ /** @overload
+ @param vec input vector(s); must have the same dimensionality and the
+ same layout as the input data used at PCA phase, that is, if
+ DATA_AS_ROW are specified, then `vec.cols==data.cols`
+ (vector dimensionality) and `vec.rows` is the number of vectors to
+ project, and the same is true for the PCA::DATA_AS_COL case.
+ @param result output vectors; in case of PCA::DATA_AS_COL, the
+ output matrix has as many columns as the number of input vectors, this
+ means that `result.cols==vec.cols` and the number of rows match the
+ number of principal components (for example, `maxComponents` parameter
+ passed to the constructor).
+ */
+ void project(InputArray vec, OutputArray result) const;
+
+ /** @brief Reconstructs vectors from their PC projections.
+
+ The methods are inverse operations to PCA::project. They take PC
+ coordinates of projected vectors and reconstruct the original vectors.
+ Unless all the principal components have been retained, the
+ reconstructed vectors are different from the originals. But typically,
+ the difference is small if the number of components is large enough (but
+ still much smaller than the original vector dimensionality). As a
+ result, PCA is used.
+ @param vec coordinates of the vectors in the principal component
+ subspace, the layout and size are the same as of PCA::project output
+ vectors.
+ */
+ Mat backProject(InputArray vec) const;
+
+ /** @overload
+ @param vec coordinates of the vectors in the principal component
+ subspace, the layout and size are the same as of PCA::project output
+ vectors.
+ @param result reconstructed vectors; the layout and size are the same as
+ of PCA::project input vectors.
+ */
+ void backProject(InputArray vec, OutputArray result) const;
+
+ /** @brief write PCA objects
+
+ Writes @ref eigenvalues @ref eigenvectors and @ref mean to specified FileStorage
+ */
+ void write(FileStorage& fs) const;
+
+ /** @brief load PCA objects
+
+ Loads @ref eigenvalues @ref eigenvectors and @ref mean from specified FileNode
+ */
+ void read(const FileNode& fn);
+
+ Mat eigenvectors; //!< eigenvectors of the covariation matrix
+ Mat eigenvalues; //!< eigenvalues of the covariation matrix
+ Mat mean; //!< mean value subtracted before the projection and added after the back projection
+};
+
+/** @example pca.cpp
+ An example using %PCA for dimensionality reduction while maintaining an amount of variance
+ */
+
+/**
+ @brief Linear Discriminant Analysis
+ @todo document this class
+ */
+class CV_EXPORTS LDA
+{
+public:
+ /** @brief constructor
+ Initializes a LDA with num_components (default 0).
+ */
+ explicit LDA(int num_components = 0);
+
+ /** Initializes and performs a Discriminant Analysis with Fisher's
+ Optimization Criterion on given data in src and corresponding labels
+ in labels. If 0 (or less) number of components are given, they are
+ automatically determined for given data in computation.
+ */
+ LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
+
+ /** Serializes this object to a given filename.
+ */
+ void save(const String& filename) const;
+
+ /** Deserializes this object from a given filename.
+ */
+ void load(const String& filename);
+
+ /** Serializes this object to a given cv::FileStorage.
+ */
+ void save(FileStorage& fs) const;
+
+ /** Deserializes this object from a given cv::FileStorage.
+ */
+ void load(const FileStorage& node);
+
+ /** destructor
+ */
+ ~LDA();
+
+ /** Compute the discriminants for data in src (row aligned) and labels.
+ */
+ void compute(InputArrayOfArrays src, InputArray labels);
+
+ /** Projects samples into the LDA subspace.
+ src may be one or more row aligned samples.
+ */
+ Mat project(InputArray src);
+
+ /** Reconstructs projections from the LDA subspace.
+ src may be one or more row aligned projections.
+ */
+ Mat reconstruct(InputArray src);
+
+ /** Returns the eigenvectors of this LDA.
+ */
+ Mat eigenvectors() const { return _eigenvectors; }
+
+ /** Returns the eigenvalues of this LDA.
+ */
+ Mat eigenvalues() const { return _eigenvalues; }
+
+ static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
+ static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
+
+protected:
+ bool _dataAsRow; // unused, but needed for 3.0 ABI compatibility.
+ int _num_components;
+ Mat _eigenvectors;
+ Mat _eigenvalues;
+ void lda(InputArrayOfArrays src, InputArray labels);
+};
+
+/** @brief Singular Value Decomposition
+
+Class for computing Singular Value Decomposition of a floating-point
+matrix. The Singular Value Decomposition is used to solve least-square
+problems, under-determined linear systems, invert matrices, compute
+condition numbers, and so on.
+
+If you want to compute a condition number of a matrix or an absolute value of
+its determinant, you do not need `u` and `vt`. You can pass
+flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u
+and vt must be computed, which is not necessary most of the time.
+
+@sa invert, solve, eigen, determinant
+*/
+class CV_EXPORTS SVD
+{
+public:
+ enum Flags {
+ /** allow the algorithm to modify the decomposed matrix; it can save space and speed up
+ processing. currently ignored. */
+ MODIFY_A = 1,
+ /** indicates that only a vector of singular values `w` is to be processed, while u and vt
+ will be set to empty matrices */
+ NO_UV = 2,
+ /** when the matrix is not square, by default the algorithm produces u and vt matrices of
+ sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is
+ specified, u and vt will be full-size square orthogonal matrices.*/
+ FULL_UV = 4
+ };
+
+ /** @brief the default constructor
+
+ initializes an empty SVD structure
+ */
+ SVD();
+
+ /** @overload
+ initializes an empty SVD structure and then calls SVD::operator()
+ @param src decomposed matrix.
+ @param flags operation flags (SVD::Flags)
+ */
+ SVD( InputArray src, int flags = 0 );
+
+ /** @brief the operator that performs SVD. The previously allocated u, w and vt are released.
+
+ The operator performs the singular value decomposition of the supplied
+ matrix. The u,`vt` , and the vector of singular values w are stored in
+ the structure. The same SVD structure can be reused many times with
+ different matrices. Each time, if needed, the previous u,`vt` , and w
+ are reclaimed and the new matrices are created, which is all handled by
+ Mat::create.
+ @param src decomposed matrix.
+ @param flags operation flags (SVD::Flags)
+ */
+ SVD& operator ()( InputArray src, int flags = 0 );
+
+ /** @brief decomposes matrix and stores the results to user-provided matrices
+
+ The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor
+ and SVD::operator(), they store the results to the user-provided
+ matrices:
+
+ @code{.cpp}
+ Mat A, w, u, vt;
+ SVD::compute(A, w, u, vt);
+ @endcode
+
+ @param src decomposed matrix
+ @param w calculated singular values
+ @param u calculated left singular vectors
+ @param vt transposed matrix of right singular values
+ @param flags operation flags - see SVD::SVD.
+ */
+ static void compute( InputArray src, OutputArray w,
+ OutputArray u, OutputArray vt, int flags = 0 );
+
+ /** @overload
+ computes singular values of a matrix
+ @param src decomposed matrix
+ @param w calculated singular values
+ @param flags operation flags - see SVD::Flags.
+ */
+ static void compute( InputArray src, OutputArray w, int flags = 0 );
+
+ /** @brief performs back substitution
+ */
+ static void backSubst( InputArray w, InputArray u,
+ InputArray vt, InputArray rhs,
+ OutputArray dst );
+
+ /** @brief solves an under-determined singular linear system
+
+ The method finds a unit-length solution x of a singular linear system
+ A\*x = 0. Depending on the rank of A, there can be no solutions, a
+ single solution or an infinite number of solutions. In general, the
+ algorithm solves the following problem:
+ \f[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\f]
+ @param src left-hand-side matrix.
+ @param dst found solution.
+ */
+ static void solveZ( InputArray src, OutputArray dst );
+
+ /** @brief performs a singular value back substitution.
+
+ The method calculates a back substitution for the specified right-hand
+ side:
+
+ \f[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\f]
+
+ Using this technique you can either get a very accurate solution of the
+ convenient linear system, or the best (in the least-squares terms)
+ pseudo-solution of an overdetermined linear system.
+
+ @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to
+ be solved, where A has been previously decomposed.
+
+ @param dst found solution of the system.
+
+ @note Explicit SVD with the further back substitution only makes sense
+ if you need to solve many linear systems with the same left-hand side
+ (for example, src ). If all you need is to solve a single system
+ (possibly with multiple rhs immediately available), simply call solve
+ add pass DECOMP_SVD there. It does absolutely the same thing.
+ */
+ void backSubst( InputArray rhs, OutputArray dst ) const;
+
+ /** @todo document */
+ template<typename _Tp, int m, int n, int nm> static
+ void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
+
+ /** @todo document */
+ template<typename _Tp, int m, int n, int nm> static
+ void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
+
+ /** @todo document */
+ template<typename _Tp, int m, int n, int nm, int nb> static
+ void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
+
+ Mat u, w, vt;
+};
+
+/** @brief Random Number Generator
+
+Random number generator. It encapsulates the state (currently, a 64-bit
+integer) and has methods to return scalar random values and to fill
+arrays with random values. Currently it supports uniform and Gaussian
+(normal) distributions. The generator uses Multiply-With-Carry
+algorithm, introduced by G. Marsaglia (
+<http://en.wikipedia.org/wiki/Multiply-with-carry> ).
+Gaussian-distribution random numbers are generated using the Ziggurat
+algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ),
+introduced by G. Marsaglia and W. W. Tsang.
+*/
+class CV_EXPORTS RNG
+{
+public:
+ enum { UNIFORM = 0,
+ NORMAL = 1
+ };
+
+ /** @brief constructor
+
+ These are the RNG constructors. The first form sets the state to some
+ pre-defined value, equal to 2\*\*32-1 in the current implementation. The
+ second form sets the state to the specified value. If you passed state=0
+ , the constructor uses the above default value instead to avoid the
+ singular random number sequence, consisting of all zeros.
+ */
+ RNG();
+ /** @overload
+ @param state 64-bit value used to initialize the RNG.
+ */
+ RNG(uint64 state);
+ /**The method updates the state using the MWC algorithm and returns the
+ next 32-bit random number.*/
+ unsigned next();
+
+ /**Each of the methods updates the state using the MWC algorithm and
+ returns the next random number of the specified type. In case of integer
+ types, the returned number is from the available value range for the
+ specified type. In case of floating-point types, the returned value is
+ from [0,1) range.
+ */
+ operator uchar();
+ /** @overload */
+ operator schar();
+ /** @overload */
+ operator ushort();
+ /** @overload */
+ operator short();
+ /** @overload */
+ operator unsigned();
+ /** @overload */
+ operator int();
+ /** @overload */
+ operator float();
+ /** @overload */
+ operator double();
+
+ /** @brief returns a random integer sampled uniformly from [0, N).
+
+ The methods transform the state using the MWC algorithm and return the
+ next random number. The first form is equivalent to RNG::next . The
+ second form returns the random number modulo N , which means that the
+ result is in the range [0, N) .
+ */
+ unsigned operator ()();
+ /** @overload
+ @param N upper non-inclusive boundary of the returned random number.
+ */
+ unsigned operator ()(unsigned N);
+
+ /** @brief returns uniformly distributed integer random number from [a,b) range
+
+ The methods transform the state using the MWC algorithm and return the
+ next uniformly-distributed random number of the specified type, deduced
+ from the input parameter type, from the range [a, b) . There is a nuance
+ illustrated by the following sample:
+
+ @code{.cpp}
+ RNG rng;
+
+ // always produces 0
+ double a = rng.uniform(0, 1);
+
+ // produces double from [0, 1)
+ double a1 = rng.uniform((double)0, (double)1);
+
+ // produces float from [0, 1)
+ double b = rng.uniform(0.f, 1.f);
+
+ // produces double from [0, 1)
+ double c = rng.uniform(0., 1.);
+
+ // may cause compiler error because of ambiguity:
+ // RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
+ double d = rng.uniform(0, 0.999999);
+ @endcode
+
+ The compiler does not take into account the type of the variable to
+ which you assign the result of RNG::uniform . The only thing that
+ matters to the compiler is the type of a and b parameters. So, if you
+ want a floating-point random number, but the range boundaries are
+ integer numbers, either put dots in the end, if they are constants, or
+ use explicit type cast operators, as in the a1 initialization above.
+ @param a lower inclusive boundary of the returned random numbers.
+ @param b upper non-inclusive boundary of the returned random numbers.
+ */
+ int uniform(int a, int b);
+ /** @overload */
+ float uniform(float a, float b);
+ /** @overload */
+ double uniform(double a, double b);
+
+ /** @brief Fills arrays with random numbers.
+
+ @param mat 2D or N-dimensional matrix; currently matrices with more than
+ 4 channels are not supported by the methods, use Mat::reshape as a
+ possible workaround.
+ @param distType distribution type, RNG::UNIFORM or RNG::NORMAL.
+ @param a first distribution parameter; in case of the uniform
+ distribution, this is an inclusive lower boundary, in case of the normal
+ distribution, this is a mean value.
+ @param b second distribution parameter; in case of the uniform
+ distribution, this is a non-inclusive upper boundary, in case of the
+ normal distribution, this is a standard deviation (diagonal of the
+ standard deviation matrix or the full standard deviation matrix).
+ @param saturateRange pre-saturation flag; for uniform distribution only;
+ if true, the method will first convert a and b to the acceptable value
+ range (according to the mat datatype) and then will generate uniformly
+ distributed random numbers within the range [saturate(a), saturate(b)),
+ if saturateRange=false, the method will generate uniformly distributed
+ random numbers in the original range [a, b) and then will saturate them,
+ it means, for example, that
+ <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely
+ produce array mostly filled with 0's and 255's, since the range (0, 255)
+ is significantly smaller than [-DBL_MAX, DBL_MAX).
+
+ Each of the methods fills the matrix with the random values from the
+ specified distribution. As the new numbers are generated, the RNG state
+ is updated accordingly. In case of multiple-channel images, every
+ channel is filled independently, which means that RNG cannot generate
+ samples from the multi-dimensional Gaussian distribution with
+ non-diagonal covariance matrix directly. To do that, the method
+ generates samples from multi-dimensional standard Gaussian distribution
+ with zero mean and identity covariation matrix, and then transforms them
+ using transform to get samples from the specified Gaussian distribution.
+ */
+ void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
+
+ /** @brief Returns the next random number sampled from the Gaussian distribution
+ @param sigma standard deviation of the distribution.
+
+ The method transforms the state using the MWC algorithm and returns the
+ next random number from the Gaussian distribution N(0,sigma) . That is,
+ the mean value of the returned random numbers is zero and the standard
+ deviation is the specified sigma .
+ */
+ double gaussian(double sigma);
+
+ uint64 state;
+};
+
+/** @brief Mersenne Twister random number generator
+
+Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
+@todo document
+ */
+class CV_EXPORTS RNG_MT19937
+{
+public:
+ RNG_MT19937();
+ RNG_MT19937(unsigned s);
+ void seed(unsigned s);
+
+ unsigned next();
+
+ operator int();
+ operator unsigned();
+ operator float();
+ operator double();
+
+ unsigned operator ()(unsigned N);
+ unsigned operator ()();
+
+ /** @brief returns uniformly distributed integer random number from [a,b) range
+
+*/
+ int uniform(int a, int b);
+ /** @brief returns uniformly distributed floating-point random number from [a,b) range
+
+*/
+ float uniform(float a, float b);
+ /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range
+
+*/
+ double uniform(double a, double b);
+
+private:
+ enum PeriodParameters {N = 624, M = 397};
+ unsigned state[N];
+ int mti;
+};
+
+//! @} core_array
+
+//! @addtogroup core_cluster
+//! @{
+
+/** @example kmeans.cpp
+ An example on K-means clustering
+*/
+
+/** @brief Finds centers of clusters and groups input samples around the clusters.
+
+The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
+and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a
+0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
+
+@note
+- (Python) An example on K-means clustering can be found at
+ opencv_source_code/samples/python/kmeans.py
+@param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
+Examples of this array can be:
+- Mat points(count, 2, CV_32F);
+- Mat points(count, 1, CV_32FC2);
+- Mat points(1, count, CV_32FC2);
+- std::vector\<cv::Point2f\> points(sampleCount);
+@param K Number of clusters to split the set by.
+@param bestLabels Input/output integer array that stores the cluster indices for every sample.
+@param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
+the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
+centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
+@param attempts Flag to specify the number of times the algorithm is executed using different
+initial labellings. The algorithm returns the labels that yield the best compactness (see the last
+function parameter).
+@param flags Flag that can take values of cv::KmeansFlags
+@param centers Output matrix of the cluster centers, one row per each cluster center.
+@return The function returns the compactness measure that is computed as
+\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
+after every attempt. The best (minimum) value is chosen and the corresponding labels and the
+compactness value are returned by the function. Basically, you can use only the core of the
+function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
+pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
+(most-compact) clustering.
+*/
+CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
+ TermCriteria criteria, int attempts,
+ int flags, OutputArray centers = noArray() );
+
+//! @} core_cluster
+
+//! @addtogroup core_basic
+//! @{
+
+/////////////////////////////// Formatted output of cv::Mat ///////////////////////////
+
+/** @todo document */
+class CV_EXPORTS Formatted
+{
+public:
+ virtual const char* next() = 0;
+ virtual void reset() = 0;
+ virtual ~Formatted();
+};
+
+/** @todo document */
+class CV_EXPORTS Formatter
+{
+public:
+ enum { FMT_DEFAULT = 0,
+ FMT_MATLAB = 1,
+ FMT_CSV = 2,
+ FMT_PYTHON = 3,
+ FMT_NUMPY = 4,
+ FMT_C = 5
+ };
+
+ virtual ~Formatter();
+
+ virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
+
+ virtual void set32fPrecision(int p = 8) = 0;
+ virtual void set64fPrecision(int p = 16) = 0;
+ virtual void setMultiline(bool ml = true) = 0;
+
+ static Ptr<Formatter> get(int fmt = FMT_DEFAULT);
+
+};
+
+static inline
+String& operator << (String& out, Ptr<Formatted> fmtd)
+{
+ fmtd->reset();
+ for(const char* str = fmtd->next(); str; str = fmtd->next())
+ out += cv::String(str);
+ return out;
+}
+
+static inline
+String& operator << (String& out, const Mat& mtx)
+{
+ return out << Formatter::get()->format(mtx);
+}
+
+//////////////////////////////////////// Algorithm ////////////////////////////////////
+
+class CV_EXPORTS Algorithm;
+
+template<typename _Tp> struct ParamType {};
+
+
+/** @brief This is a base class for all more or less complex algorithms in OpenCV
+
+especially for classes of algorithms, for which there can be multiple implementations. The examples
+are stereo correspondence (for which there are algorithms like block matching, semi-global block
+matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians
+models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
+etc.).
+
+Here is example of SIFT use in your application via Algorithm interface:
+@code
+ #include "opencv2/opencv.hpp"
+ #include "opencv2/xfeatures2d.hpp"
+ using namespace cv::xfeatures2d;
+
+ Ptr<Feature2D> sift = SIFT::create();
+ FileStorage fs("sift_params.xml", FileStorage::READ);
+ if( fs.isOpened() ) // if we have file with parameters, read them
+ {
+ sift->read(fs["sift_params"]);
+ fs.release();
+ }
+ else // else modify the parameters and store them; user can later edit the file to use different parameters
+ {
+ sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
+ {
+ WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
+ sift->write(fs);
+ }
+ }
+ Mat image = imread("myimage.png", 0), descriptors;
+ vector<KeyPoint> keypoints;
+ sift->detectAndCompute(image, noArray(), keypoints, descriptors);
+@endcode
+ */
+class CV_EXPORTS_W Algorithm
+{
+public:
+ Algorithm();
+ virtual ~Algorithm();
+
+ /** @brief Clears the algorithm state
+ */
+ CV_WRAP virtual void clear() {}
+
+ /** @brief Stores algorithm parameters in a file storage
+ */
+ virtual void write(FileStorage& fs) const { (void)fs; }
+
+ /** @brief Reads algorithm parameters from a file storage
+ */
+ virtual void read(const FileNode& fn) { (void)fn; }
+
+ /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
+ */
+ virtual bool empty() const { return false; }
+
+ /** @brief Reads algorithm from the file node
+
+ This is static template method of Algorithm. It's usage is following (in the case of SVM):
+ @code
+ cv::FileStorage fsRead("example.xml", FileStorage::READ);
+ Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());
+ @endcode
+ In order to make this method work, the derived class must overwrite Algorithm::read(const
+ FileNode& fn) and also have static create() method without parameters
+ (or with all the optional parameters)
+ */
+ template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn)
+ {
+ Ptr<_Tp> obj = _Tp::create();
+ obj->read(fn);
+ return !obj->empty() ? obj : Ptr<_Tp>();
+ }
+
+ /** @brief Loads algorithm from the file
+
+ @param filename Name of the file to read.
+ @param objname The optional name of the node to read (if empty, the first top-level node will be used)
+
+ This is static template method of Algorithm. It's usage is following (in the case of SVM):
+ @code
+ Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
+ @endcode
+ In order to make this method work, the derived class must overwrite Algorithm::read(const
+ FileNode& fn).
+ */
+ template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
+ {
+ FileStorage fs(filename, FileStorage::READ);
+ FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
+ if (fn.empty()) return Ptr<_Tp>();
+ Ptr<_Tp> obj = _Tp::create();
+ obj->read(fn);
+ return !obj->empty() ? obj : Ptr<_Tp>();
+ }
+
+ /** @brief Loads algorithm from a String
+
+ @param strModel The string variable containing the model you want to load.
+ @param objname The optional name of the node to read (if empty, the first top-level node will be used)
+
+ This is static template method of Algorithm. It's usage is following (in the case of SVM):
+ @code
+ Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
+ @endcode
+ */
+ template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String())
+ {
+ FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY);
+ FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
+ Ptr<_Tp> obj = _Tp::create();
+ obj->read(fn);
+ return !obj->empty() ? obj : Ptr<_Tp>();
+ }
+
+ /** Saves the algorithm to a file.
+ In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */
+ CV_WRAP virtual void save(const String& filename) const;
+
+ /** Returns the algorithm string identifier.
+ This string is used as top level xml/yml node tag when the object is saved to a file or string. */
+ CV_WRAP virtual String getDefaultName() const;
+
+protected:
+ void writeFormat(FileStorage& fs) const;
+};
+
+struct Param {
+ enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
+ UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
+};
+
+
+
+template<> struct ParamType<bool>
+{
+ typedef bool const_param_type;
+ typedef bool member_type;
+
+ enum { type = Param::BOOLEAN };
+};
+
+template<> struct ParamType<int>
+{
+ typedef int const_param_type;
+ typedef int member_type;
+
+ enum { type = Param::INT };
+};
+
+template<> struct ParamType<double>
+{
+ typedef double const_param_type;
+ typedef double member_type;
+
+ enum { type = Param::REAL };
+};
+
+template<> struct ParamType<String>
+{
+ typedef const String& const_param_type;
+ typedef String member_type;
+
+ enum { type = Param::STRING };
+};
+
+template<> struct ParamType<Mat>
+{
+ typedef const Mat& const_param_type;
+ typedef Mat member_type;
+
+ enum { type = Param::MAT };
+};
+
+template<> struct ParamType<std::vector<Mat> >
+{
+ typedef const std::vector<Mat>& const_param_type;
+ typedef std::vector<Mat> member_type;
+
+ enum { type = Param::MAT_VECTOR };
+};
+
+template<> struct ParamType<Algorithm>
+{
+ typedef const Ptr<Algorithm>& const_param_type;
+ typedef Ptr<Algorithm> member_type;
+
+ enum { type = Param::ALGORITHM };
+};
+
+template<> struct ParamType<float>
+{
+ typedef float const_param_type;
+ typedef float member_type;
+
+ enum { type = Param::FLOAT };
+};
+
+template<> struct ParamType<unsigned>
+{
+ typedef unsigned const_param_type;
+ typedef unsigned member_type;
+
+ enum { type = Param::UNSIGNED_INT };
+};
+
+template<> struct ParamType<uint64>
+{
+ typedef uint64 const_param_type;
+ typedef uint64 member_type;
+
+ enum { type = Param::UINT64 };
+};
+
+template<> struct ParamType<uchar>
+{
+ typedef uchar const_param_type;
+ typedef uchar member_type;
+
+ enum { type = Param::UCHAR };
+};
+
+//! @} core_basic
+
+} //namespace cv
+
+#include "opencv2/core/operations.hpp"
+#include "opencv2/core/cvstd.inl.hpp"
+#include "opencv2/core/utility.hpp"
+#include "opencv2/core/optim.hpp"
+#include "opencv2/core/ovx.hpp"
+
+#endif /*OPENCV_CORE_HPP*/