summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/opencv2/bioinspired/retina.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/linux/include/opencv2/bioinspired/retina.hpp')
-rw-r--r--thirdparty/linux/include/opencv2/bioinspired/retina.hpp456
1 files changed, 456 insertions, 0 deletions
diff --git a/thirdparty/linux/include/opencv2/bioinspired/retina.hpp b/thirdparty/linux/include/opencv2/bioinspired/retina.hpp
new file mode 100644
index 0000000..583599c
--- /dev/null
+++ b/thirdparty/linux/include/opencv2/bioinspired/retina.hpp
@@ -0,0 +1,456 @@
+/*#******************************************************************************
+ ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+ **
+ ** By downloading, copying, installing or using the software you agree to this license.
+ ** If you do not agree to this license, do not download, install,
+ ** copy or use the software.
+ **
+ **
+ ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
+ ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
+ **
+ ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
+ **
+ ** Creation - enhancement process 2007-2015
+ ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
+ **
+ ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
+ ** Refer to the following research paper for more information:
+ ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+ ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
+ ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
+ **
+ ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
+ ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
+ ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
+ ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
+ ** ====> more informations in the above cited Jeanny Heraults's book.
+ **
+ ** License Agreement
+ ** For Open Source Computer Vision Library
+ **
+ ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+ ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
+ **
+ ** For Human Visual System tools (bioinspired)
+ ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
+ **
+ ** Third party copyrights are property of their respective owners.
+ **
+ ** Redistribution and use in source and binary forms, with or without modification,
+ ** are permitted provided that the following conditions are met:
+ **
+ ** * Redistributions of source code must retain the above copyright notice,
+ ** this list of conditions and the following disclaimer.
+ **
+ ** * Redistributions in binary form must reproduce the above copyright notice,
+ ** this list of conditions and the following disclaimer in the documentation
+ ** and/or other materials provided with the distribution.
+ **
+ ** * The name of the copyright holders may not be used to endorse or promote products
+ ** derived from this software without specific prior written permission.
+ **
+ ** This software is provided by the copyright holders and contributors "as is" and
+ ** any express or implied warranties, including, but not limited to, the implied
+ ** warranties of merchantability and fitness for a particular purpose are disclaimed.
+ ** In no event shall the Intel Corporation or contributors be liable for any direct,
+ ** indirect, incidental, special, exemplary, or consequential damages
+ ** (including, but not limited to, procurement of substitute goods or services;
+ ** loss of use, data, or profits; or business interruption) however caused
+ ** and on any theory of liability, whether in contract, strict liability,
+ ** or tort (including negligence or otherwise) arising in any way out of
+ ** the use of this software, even if advised of the possibility of such damage.
+ *******************************************************************************/
+
+#ifndef __OPENCV_BIOINSPIRED_RETINA_HPP__
+#define __OPENCV_BIOINSPIRED_RETINA_HPP__
+
+/**
+@file
+@date Jul 19, 2011
+@author Alexandre Benoit
+*/
+
+#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support
+
+
+namespace cv{
+namespace bioinspired{
+
+//! @addtogroup bioinspired
+//! @{
+
+enum {
+ RETINA_COLOR_RANDOM, //!< each pixel position is either R, G or B in a random choice
+ RETINA_COLOR_DIAGONAL,//!< color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
+ RETINA_COLOR_BAYER//!< standard bayer sampling
+};
+
+
+/** @brief retina model parameters structure
+
+ For better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel
+
+ Here is the default configuration file of the retina module. It gives results such as the first
+ retina output shown on the top of this page.
+
+ @code{xml}
+ <?xml version="1.0"?>
+ <opencv_storage>
+ <OPLandIPLparvo>
+ <colorMode>1</colorMode>
+ <normaliseOutput>1</normaliseOutput>
+ <photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
+ <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
+ <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
+ <horizontalCellsGain>0.01</horizontalCellsGain>
+ <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
+ <hcellsSpatialConstant>7.</hcellsSpatialConstant>
+ <ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity></OPLandIPLparvo>
+ <IPLmagno>
+ <normaliseOutput>1</normaliseOutput>
+ <parasolCells_beta>0.</parasolCells_beta>
+ <parasolCells_tau>0.</parasolCells_tau>
+ <parasolCells_k>7.</parasolCells_k>
+ <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
+ <V0CompressionParameter>9.5e-01</V0CompressionParameter>
+ <localAdaptintegration_tau>0.</localAdaptintegration_tau>
+ <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
+ </opencv_storage>
+ @endcode
+
+ Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page.
+
+ @code{xml}
+ <?xml version="1.0"?>
+ <opencv_storage>
+ <OPLandIPLparvo>
+ <colorMode>1</colorMode>
+ <normaliseOutput>1</normaliseOutput>
+ <photoreceptorsLocalAdaptationSensitivity>8.9e-01</photoreceptorsLocalAdaptationSensitivity>
+ <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
+ <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
+ <horizontalCellsGain>0.3</horizontalCellsGain>
+ <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
+ <hcellsSpatialConstant>7.</hcellsSpatialConstant>
+ <ganglionCellsSensitivity>8.9e-01</ganglionCellsSensitivity></OPLandIPLparvo>
+ <IPLmagno>
+ <normaliseOutput>1</normaliseOutput>
+ <parasolCells_beta>0.</parasolCells_beta>
+ <parasolCells_tau>0.</parasolCells_tau>
+ <parasolCells_k>7.</parasolCells_k>
+ <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
+ <V0CompressionParameter>9.5e-01</V0CompressionParameter>
+ <localAdaptintegration_tau>0.</localAdaptintegration_tau>
+ <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
+ </opencv_storage>
+ @endcode
+ */
+ struct RetinaParameters{
+ //! Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
+ struct OPLandIplParvoParameters{
+ OPLandIplParvoParameters():colorMode(true),
+ normaliseOutput(true),
+ photoreceptorsLocalAdaptationSensitivity(0.75f),
+ photoreceptorsTemporalConstant(0.9f),
+ photoreceptorsSpatialConstant(0.53f),
+ horizontalCellsGain(0.01f),
+ hcellsTemporalConstant(0.5f),
+ hcellsSpatialConstant(7.f),
+ ganglionCellsSensitivity(0.75f) { } // default setup
+ bool colorMode, normaliseOutput;
+ float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity;
+ };
+ //! Inner Plexiform Layer Magnocellular channel (IplMagno)
+ struct IplMagnoParameters{
+ IplMagnoParameters():
+ normaliseOutput(true),
+ parasolCells_beta(0.f),
+ parasolCells_tau(0.f),
+ parasolCells_k(7.f),
+ amacrinCellsTemporalCutFrequency(2.0f),
+ V0CompressionParameter(0.95f),
+ localAdaptintegration_tau(0.f),
+ localAdaptintegration_k(7.f) { } // default setup
+ bool normaliseOutput;
+ float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k;
+ };
+ OPLandIplParvoParameters OPLandIplParvo;
+ IplMagnoParameters IplMagno;
+ };
+
+
+
+/** @brief class which allows the Gipsa/Listic Labs model to be used with OpenCV.
+
+This retina model allows spatio-temporal image processing (applied on still images, video sequences).
+As a summary, these are the retina model properties:
+- It applies a spectral whithening (mid-frequency details enhancement)
+- high frequency spatio-temporal noise reduction
+- low frequency luminance to be reduced (luminance range compression)
+- local logarithmic luminance compression allows details to be enhanced in low light conditions
+
+USE : this model can be used basically for spatio-temporal video effects but also for :
+ _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
+ _using the getMagno method output matrix : motion analysis also with the previously cited properties
+
+for more information, reer to the following papers :
+Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
+
+The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
+take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
+B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
+take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
+more informations in the above cited Jeanny Heraults's book.
+ */
+class CV_EXPORTS_W Retina : public Algorithm {
+
+public:
+
+
+ /** @brief Retreive retina input buffer size
+ @return the retina input buffer size
+ */
+ CV_WRAP virtual Size getInputSize()=0;
+
+ /** @brief Retreive retina output buffer size that can be different from the input if a spatial log
+ transformation is applied
+ @return the retina output buffer size
+ */
+ CV_WRAP virtual Size getOutputSize()=0;
+
+ /** @brief Try to open an XML retina parameters file to adjust current retina instance setup
+
+ - if the xml file does not exist, then default setup is applied
+ - warning, Exceptions are thrown if read XML file is not valid
+ @param retinaParameterFile the parameters filename
+ @param applyDefaultSetupOnFailure set to true if an error must be thrown on error
+
+ You can retrieve the current parameters structure using the method Retina::getParameters and update
+ it before running method Retina::setup.
+ */
+ CV_WRAP virtual void setup(String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true)=0;
+
+ /** @overload
+ @param fs the open Filestorage which contains retina parameters
+ @param applyDefaultSetupOnFailure set to true if an error must be thrown on error
+ */
+ virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0;
+
+ /** @overload
+ @param newParameters a parameters structures updated with the new target configuration.
+ */
+ virtual void setup(RetinaParameters newParameters)=0;
+
+ /**
+ @return the current parameters setup
+ */
+ virtual RetinaParameters getParameters()=0;
+
+ /** @brief Outputs a string showing the used parameters setup
+ @return a string which contains formated parameters information
+ */
+ CV_WRAP virtual const String printSetup()=0;
+
+ /** @brief Write xml/yml formated parameters information
+ @param fs the filename of the xml file that will be open and writen with formatted parameters
+ information
+ */
+ CV_WRAP virtual void write( String fs ) const=0;
+
+ /** @overload */
+ virtual void write( FileStorage& fs ) const=0;
+
+ /** @brief Setup the OPL and IPL parvo channels (see biologocal model)
+
+ OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
+ which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
+ (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
+ Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
+ reference papers for more informations.
+ for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
+ @param colorMode specifies if (true) color is processed of not (false) to then processing gray
+ level image
+ @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
+ @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
+ (more log compression effect when value increases)
+ @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
+ the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
+ frames, typical value is 1 frame
+ @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
+ the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
+ pixels, typical value is 1 pixel
+ @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
+ the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
+ still reachable at the output, typicall value is 0
+ @param HcellsTemporalConstant the time constant of the first order low pass filter of the
+ horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
+ frames, typical value is 1 frame, as the photoreceptors
+ @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
+ horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
+ typical value is 5 pixel, this value is also used for local contrast computing when computing
+ the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
+ channel model)
+ @param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation
+ output, set a value between 0.6 and 1 for best results, a high value increases more the low
+ value sensitivity... and the output saturates faster, recommended value: 0.7
+ */
+ CV_WRAP virtual void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7f, const float photoreceptorsTemporalConstant=0.5f, const float photoreceptorsSpatialConstant=0.53f, const float horizontalCellsGain=0.f, const float HcellsTemporalConstant=1.f, const float HcellsSpatialConstant=7.f, const float ganglionCellsSensitivity=0.7f)=0;
+
+ /** @brief Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
+
+ this channel processes signals output from OPL processing stage in peripheral vision, it allows
+ motion information enhancement. It is decorrelated from the details channel. See reference
+ papers for more details.
+
+ @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
+ @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
+ IPL level of the retina (for ganglion cells local adaptation), typical value is 0
+ @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
+ at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
+ value is 0 (immediate response)
+ @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
+ at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
+ value is 5
+ @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
+ the magnocellular way (motion information channel), unit is frames, typical value is 1.2
+ @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
+ output, set a value between 0.6 and 1 for best results, a high value increases more the low
+ value sensitivity... and the output saturates faster, recommended value: 0.95
+ @param localAdaptintegration_tau specifies the temporal constant of the low pas filter
+ involved in the computation of the local "motion mean" for the local adaptation computation
+ @param localAdaptintegration_k specifies the spatial constant of the low pas filter involved
+ in the computation of the local "motion mean" for the local adaptation computation
+ */
+ CV_WRAP virtual void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0.f, const float parasolCells_tau=0.f, const float parasolCells_k=7.f, const float amacrinCellsTemporalCutFrequency=1.2f, const float V0CompressionParameter=0.95f, const float localAdaptintegration_tau=0.f, const float localAdaptintegration_k=7.f)=0;
+
+ /** @brief Method which allows retina to be applied on an input image,
+
+ after run, encapsulated retina module is ready to deliver its outputs using dedicated
+ acccessors, see getParvo and getMagno methods
+ @param inputImage the input Mat image to be processed, can be gray level or BGR coded in any
+ format (from 8bit to 16bits)
+ */
+ CV_WRAP virtual void run(InputArray inputImage)=0;
+
+ /** @brief Method which processes an image in the aim to correct its luminance correct
+ backlight problems, enhance details in shadows.
+
+ This method is designed to perform High Dynamic Range image tone mapping (compress \>8bit/pixel
+ images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
+ (simplified version of the run/getParvo methods call) since it does not include the
+ spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
+ whitening and many other stuff. However, it works great for tone mapping and in a faster way.
+
+ Check the demos and experiments section to see examples and the way to perform tone mapping
+ using the original retina model and the method.
+
+ @param inputImage the input image to process (should be coded in float format : CV_32F,
+ CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).
+ @param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
+ */
+ CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0;
+
+ /** @brief Accessor of the details channel of the retina (models foveal vision).
+
+ Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
+ the non RAW method allows a normalized matrix to be retrieved.
+
+ @param retinaOutput_parvo the output buffer (reallocated if necessary), format can be :
+ - a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
+ - RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
+ B2, ...Bn), this output is the original retina filter model output, without any
+ quantification or rescaling.
+ @see getParvoRAW
+ */
+ CV_WRAP virtual void getParvo(OutputArray retinaOutput_parvo)=0;
+
+ /** @brief Accessor of the details channel of the retina (models foveal vision).
+ @see getParvo
+ */
+ CV_WRAP virtual void getParvoRAW(OutputArray retinaOutput_parvo)=0;
+
+ /** @brief Accessor of the motion channel of the retina (models peripheral vision).
+
+ Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
+ the non RAW method allows a normalized matrix to be retrieved.
+ @param retinaOutput_magno the output buffer (reallocated if necessary), format can be :
+ - a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
+ - RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
+ original retina filter model output, without any quantification or rescaling.
+ @see getMagnoRAW
+ */
+ CV_WRAP virtual void getMagno(OutputArray retinaOutput_magno)=0;
+
+ /** @brief Accessor of the motion channel of the retina (models peripheral vision).
+ @see getMagno
+ */
+ CV_WRAP virtual void getMagnoRAW(OutputArray retinaOutput_magno)=0;
+
+ /** @overload */
+ CV_WRAP virtual const Mat getMagnoRAW() const=0;
+ /** @overload */
+ CV_WRAP virtual const Mat getParvoRAW() const=0;
+
+ /** @brief Activate color saturation as the final step of the color demultiplexing process -\> this
+ saturation is a sigmoide function applied to each channel of the demultiplexed image.
+ @param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
+ @param colorSaturationValue the saturation factor : a simple factor applied on the chrominance
+ buffers
+ */
+ CV_WRAP virtual void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0f)=0;
+
+ /** @brief Clears all retina buffers
+
+ (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
+ transition occuring just after this method call.
+ */
+ CV_WRAP virtual void clearBuffers()=0;
+
+ /** @brief Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
+ default, it is activated
+ @param activate true if Magnocellular output should be activated, false if not... if activated,
+ the Magnocellular output can be retrieved using the **getMagno** methods
+ */
+ CV_WRAP virtual void activateMovingContoursProcessing(const bool activate)=0;
+
+ /** @brief Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
+ default, it is activated
+ @param activate true if Parvocellular (contours information extraction) output should be
+ activated, false if not... if activated, the Parvocellular output can be retrieved using the
+ Retina::getParvo methods
+ */
+ CV_WRAP virtual void activateContoursProcessing(const bool activate)=0;
+};
+
+//! @relates bioinspired::Retina
+//! @{
+
+/** @overload */
+CV_EXPORTS_W Ptr<Retina> createRetina(Size inputSize);
+/** @brief Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
+
+@param inputSize the input frame size
+@param colorMode the chosen processing mode : with or without color processing
+@param colorSamplingMethod specifies which kind of color sampling will be used :
+- cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
+- cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
+- cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
+@param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
+be used
+@param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
+factor of the output frame (as the center (fovea) is high resolution and corners can be
+underscaled, then a reduction of the output is allowed without precision leak
+@param samplingStrenght only usefull if param useRetinaLogSampling=true, specifies the strenght of
+the log scale that is applied
+ */
+CV_EXPORTS_W Ptr<Retina> createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const float reductionFactor=1.0f, const float samplingStrenght=10.0f);
+
+//! @}
+
+//! @}
+
+}
+}
+#endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */