summaryrefslogtreecommitdiff
path: root/sci_gateway1/cpp/common1.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'sci_gateway1/cpp/common1.cpp')
-rw-r--r--sci_gateway1/cpp/common1.cpp897
1 files changed, 897 insertions, 0 deletions
diff --git a/sci_gateway1/cpp/common1.cpp b/sci_gateway1/cpp/common1.cpp
new file mode 100644
index 0000000..41752e6
--- /dev/null
+++ b/sci_gateway1/cpp/common1.cpp
@@ -0,0 +1,897 @@
+/***************************************************
+Author : Sukul Bagai
+***************************************************/
+
+//takes the matrix type as parameter and returns a string of the type
+string type2str(int type)
+{
+ string r;
+ uchar depth = type & CV_MAT_DEPTH_MASK;
+ switch ( depth )
+ {
+ case CV_8U: r = "8U"; break;
+ case CV_8S: r = "8S"; break;
+ case CV_16U: r = "16U"; break;
+ case CV_16S: r = "16S"; break;
+ case CV_32S: r = "32S"; break;
+ case CV_32F: r = "32F"; break;
+ case CV_64F: r = "64F"; break;
+ default: r = "User"; break;
+ }
+ return r;
+}
+
+//takes matrix type as parameter and returns no. of channels of the image matrix
+int no_of_channels(int type)
+{
+ uchar chans = 1 + (type >> CV_CN_SHIFT);
+ return chans;
+}
+
+//function used to retrieve image matrix from Scilab environment
+/*
+ We need to retrieve image from the Scilab environment
+ We do this by getting a List of 2-D matrices. The size of the list, in our case is known(either 3 or 1,
+ 3 for a coloured image and 1 for a grayscale image), hence we do not require the dynamic capability of a list.
+ Incase of a 3-channel image, the first matrix will be a matrix with dimensions img.rows X img.cols, and will denote the R(red)
+ values of the image. Similarly, the second will have the G(green) values, and the third will have B(blue) values.
+ For a single-channeled image, we will have only a single matrix
+*/
+int retrieveImage(Mat &image,int pos)
+{
+
+ SciErr sciErr;
+ int iRows=0,iCols=0,i,j,k=0;
+ int *piAddr = NULL;
+ int *piAddrChild = NULL;
+ int iPrec = 0,iItem = 0;
+
+ //retrieving number of items in the list and type of data(integer/float)
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ sciprint("Test1");
+ sciErr = getListItemAddress(pvApiCtx,piAddr,1,&piAddrChild);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ sciErr = getListItemNumber(pvApiCtx,piAddr,&iItem);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ sciprint("Testing1");
+ if(isIntegerType(pvApiCtx, piAddrChild))
+ {
+ //getting precision
+ sciErr = getMatrixOfIntegerPrecision(pvApiCtx, piAddrChild, &iPrec);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ switch(iPrec)
+ {
+ case SCI_UINT8: //for unsigned integer 8
+ {
+ if(iItem==3)
+ {
+ unsigned char *pstDataR = NULL;
+ unsigned char *pstDataG = NULL;
+ unsigned char *pstDataB = NULL;
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfUnsignedInteger8InList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the G values
+ sciErr = getMatrixOfUnsignedInteger8InList(pvApiCtx, piAddr, 2, &iRows, &iCols, &pstDataG);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the B values
+ sciErr = getMatrixOfUnsignedInteger8InList(pvApiCtx, piAddr, 3, &iRows, &iCols, &pstDataB);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_8UC3);
+
+ /*Now that we have the 3 matrices(R,G,B), we need to assign those values to the pixels. The following code does this*/
+ k=0;
+ for(i=0;i<iRows;i++)
+ {
+ for(j=0;j<iCols;j++)
+ {
+ image.at<Vec3b>(i,j)[2]=pstDataR[i+iRows*j];
+ image.at<Vec3b>(i,j)[1]=pstDataG[i+iRows*j];
+ image.at<Vec3b>(i,j)[0]=pstDataB[i+iRows*j];
+ }
+ }
+ }
+ else
+ {
+ unsigned char *pstDataR = NULL;
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfUnsignedInteger8InList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_8UC1);
+
+ //Assigning matrix value to pixel
+ k=0;
+ for(i=0;i<iRows;i++)
+ for(j=0;j<iCols;j++)
+ image.at<uchar>(i,j)=pstDataR[i+iRows*j];
+ }
+ break;
+ }
+ case SCI_UINT16: //for unsigned integer 16
+ {
+ if(iItem==3)
+ {
+ short unsigned int *pstDataR = NULL;
+ short unsigned int *pstDataG = NULL;
+ short unsigned int *pstDataB = NULL;
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfUnsignedInteger16InList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the G values
+ sciErr = getMatrixOfUnsignedInteger16InList(pvApiCtx, piAddr, 2, &iRows, &iCols, &pstDataG);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the B values
+ sciErr = getMatrixOfUnsignedInteger16InList(pvApiCtx, piAddr, 3, &iRows, &iCols, &pstDataB);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_16UC3);
+
+ //Now that we have the 3 matrices(R,G,B), we need to assign those values to the pixels. The following code does this
+ k=0;
+ for(i=0;i<iRows;i++)
+ {
+ for(j=0;j<iCols;j++)
+ {
+ image.at<Vec3s>(i,j)[2]=pstDataR[i+iRows*j];
+ image.at<Vec3s>(i,j)[1]=pstDataG[i+iRows*j];
+ image.at<Vec3s>(i,j)[0]=pstDataB[i+iRows*j];
+ //i+iRows*j
+ }
+ }
+ }
+ else
+ {
+ short unsigned int *pstDataR = NULL;
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfUnsignedInteger16InList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_16UC1);
+
+ //Assigning matrix values to pixels
+ k=0;
+ for(i=0;i<iRows;i++)
+ for(j=0;j<iCols;j++)
+ image.at<ushort>(i,j)=pstDataR[i+iRows*j];
+ }
+ break;
+ }
+ case SCI_INT16: //for signed integer 16
+ {
+ if(iItem==3)
+ {
+ short int *pstDataR = NULL;
+ short int *pstDataG = NULL;
+ short int *pstDataB = NULL;
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfInteger16InList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the G values
+ sciErr = getMatrixOfInteger16InList(pvApiCtx, piAddr, 2, &iRows, &iCols, &pstDataG);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the B values
+ sciErr = getMatrixOfInteger16InList(pvApiCtx, piAddr, 3, &iRows, &iCols, &pstDataB);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_16SC3);
+
+ //Now that we have the 3 matrices(R,G,B), we need to assign those values to the pixels. The following code does this
+ k=0;
+ for(i=0;i<iRows;i++)
+ {
+ for(j=0;j<iCols;j++)
+ {
+ image.at<Vec3s>(i,j)[2]=pstDataR[i+iRows*j];
+ image.at<Vec3s>(i,j)[1]=pstDataG[i+iRows*j];
+ image.at<Vec3s>(i,j)[0]=pstDataB[i+iRows*j];
+ }
+ }
+ }
+ else
+ {
+ short int *pstDataR = NULL;
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfInteger16InList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_16SC1);
+
+ //Assigning image matrix values to pixels
+ k=0;
+ for(i=0;i<iRows;i++)
+ for(j=0;j<iCols;j++)
+ image.at<short>(i,j)=pstDataR[i+iRows*j];
+ }
+ break;
+ }
+ }
+ }
+ else //for floating point/ double precision values
+ {
+ sciprint("Test2");
+ if(iItem==3)
+ {
+ sciprint("Again");
+ double *pstDataR = NULL;
+ double *pstDataG = NULL;
+ double *pstDataB = NULL;
+// sciErr = getVarAddressFromPosition(pvApiCtx,1,&piAddr);
+// if(sciErr.iErr)
+// {
+// printError(&sciErr, 0);
+// return 0;
+// }
+ sciprint("Testing2");
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfDoubleInList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+// sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+// if(sciErr.iErr)
+// {
+// printError(&sciErr, 0);
+// return 0;
+// }
+ sciprint("Testing3");
+ //retrive the matrix of the G values
+ sciErr = getMatrixOfDoubleInList(pvApiCtx, piAddr, 2, &iRows, &iCols, &pstDataG);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive address of the list
+// sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+// if(sciErr.iErr)
+// {
+// printError(&sciErr, 0);
+// return 0;
+// }
+ sciprint("Testing4");
+ //retrive the matrix of the B values
+ sciErr = getMatrixOfDoubleInList(pvApiCtx, piAddr, 3, &iRows, &iCols, &pstDataB);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_64FC3);
+
+ //Now that we have the 3 matrices(R,G,B), we need to assign those values to the pixels. The following code does this
+ k=0;
+ for(i=0;i<iRows;i++)
+ {
+ for(j=0;j<iCols;j++)
+ {
+ image.at<Vec3d>(i,j)[2]=pstDataR[i+iRows*j];
+ image.at<Vec3d>(i,j)[1]=pstDataG[i+iRows*j];
+ image.at<Vec3d>(i,j)[0]=pstDataB[i+iRows*j];
+ }
+ }
+ sciprint("Test3");
+ }
+ else
+ {
+ double *pstDataR = NULL;
+ sciErr = getVarAddressFromPosition(pvApiCtx,pos,&piAddr);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ //retrive the matrix of the R values
+ sciErr = getMatrixOfDoubleInList(pvApiCtx, piAddr, 1, &iRows, &iCols, &pstDataR);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //creating an image matrix with the no. of rows and columns we retrieved, and assigning it to be of the form 8-bit unsinged integers
+ image = Mat(iRows,iCols,CV_64FC1);
+
+ //Assigning image matrix values to pixels
+ k=0;
+ for(i=0;i<iRows;i++)
+ for(j=0;j<iCols;j++)
+ image.at<double>(i,j)=pstDataR[i+iRows*j];
+ }
+ }
+ return 1;
+}
+
+//function that returns an image matrix to the Scilab environment
+/*
+ What we now need, is to pass the image matrix to the Scilab environment.
+ We do this by passing a List of 2-D matrices. The size of the list, in our case is known(either 3 or 1,
+ 3 for a coloured image and 1 for a grayscale image), hence we do not require the dynamic capability of a list.
+ Incase of a 3-channel image, the first matrix will be a matrix with dimensions img.rows X img.cols, and will denote the R(red)
+ values of the image. Similarly, the second will have the G(green) values, and the third will have B(blue) values.
+ For a single-channeled image, we will have only a single matrix
+*/
+int returnImage(char *checker,Mat img,int pos)
+{
+ int i,j,k=0;
+ int *piAddrNew = NULL;
+ SciErr sciErr;
+ int num=no_of_channels(img.type()); //num now contains no. of channels of the image
+ //creating the list that will be passed to the Scilab enviroment
+ if(num==3)
+ sciErr = createList(pvApiCtx, nbInputArgument(pvApiCtx) + pos, 3, &piAddrNew);
+ else
+ sciErr = createList(pvApiCtx, nbInputArgument(pvApiCtx) + pos, 1, &piAddrNew);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ if(strcmp(checker,"8U")==0) //for Unsigned Integer 8
+ {
+ if(num==3)
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ unsigned char *r = (unsigned char *)malloc(img.rows * img.cols * sizeof(unsigned char));
+ unsigned char *g = (unsigned char *)malloc(img.rows * img.cols * sizeof(unsigned char));
+ unsigned char *b = (unsigned char *)malloc(img.rows * img.cols * sizeof(unsigned char));
+
+ //The next block of code retrieves the RGB values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ {
+ for(j=0;j<img.cols;j++)
+ {
+ Vec3b intensity = img.at<Vec3b>(i, j);
+ *(r + j*img.rows + i)=intensity.val[2];
+ *(g + j*img.rows + i)=intensity.val[1];
+ *(b + j*img.rows + i)=intensity.val[0];
+ }
+ }
+
+
+ //Adding the R value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger8InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols, r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the G value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger8InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 2, img.rows,img.cols,g);
+ free(g);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the B value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger8InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 3, img.rows,img.cols, b);
+ free(b);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+ else
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ unsigned char *r = (unsigned char *)malloc(img.rows * img.cols * sizeof(unsigned char));
+
+ //The next block of code retrieves the image colour values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ for(j=0;j<img.cols;j++)
+ *(r + i*img.rows + j)=img.at<uchar>(i, j);
+
+
+ //Adding the image colour value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger8InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1,img.rows,img.cols, r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ }
+ }
+ else if(strcmp(checker,"16U")==0) //for Unsigned Integer 16
+ {
+ if(num==3)
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ short unsigned int *r = (short unsigned int *)malloc(img.rows * img.cols * sizeof(short unsigned int));
+ short unsigned int *g = (short unsigned int *)malloc(img.rows * img.cols * sizeof(short unsigned int));
+ short unsigned int *b = (short unsigned int *)malloc(img.rows * img.cols * sizeof(short unsigned int));
+
+ //The next block of code retrieves the RGB values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ {
+ for(j=0;j<img.cols;j++)
+ {
+ Vec3s intensity = img.at<Vec3s>(i, j);
+ *(r + i*img.rows + j)=intensity.val[2];
+ *(g + i*img.rows + j)=intensity.val[1];
+ *(b + i*img.rows + j)=intensity.val[0];
+ }
+ }
+
+ //Adding the R value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols,r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the G value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 2, img.rows,img.cols,g);
+ free(g);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the B value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 3, img.rows,img.cols, b);
+ free(b);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+ else
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ short unsigned int *r = (short unsigned int *)malloc(img.rows * img.cols * sizeof(short unsigned int));
+
+ //The next block of code retrieves the image colour values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ for(j=0;j<img.cols;j++)
+ *(r + i*img.rows + j)=img.at<ushort>(i, j);
+
+ //Adding the image colour value matrix to the list
+ sciErr = createMatrixOfUnsignedInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols,r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+
+ }
+ else if(strcmp(checker,"16S")==0) //for Signed Integer 16
+ {
+ if(num==3)
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ short int *r = (short int *)malloc(img.rows * img.cols * sizeof(short int));
+ short int *g = (short int *)malloc(img.rows * img.cols * sizeof(short int));
+ short int *b = (short int *)malloc(img.rows * img.cols * sizeof(short int));
+ //The next block of code retrieves the RGB values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ {
+ for(j=0;j<img.cols;j++)
+ {
+ Vec3s intensity = img.at<Vec3s>(i, j);
+ *(r + i*img.rows + j)=intensity.val[2];
+ *(g + i*img.rows + j)=intensity.val[1];
+ *(b + i*img.rows + j)=intensity.val[0];
+ }
+ }
+
+ //Adding the R value matrix to the list
+ sciErr = createMatrixOfInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols, r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the G value matrix to the list
+ sciErr = createMatrixOfInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 2, img.rows,img.cols, g);
+ free(g);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the B value matrix to the list
+ sciErr = createMatrixOfInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 3, img.rows,img.cols,b);
+ free(b);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+
+ else
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ short int *r = (short int *)malloc(img.rows * img.cols * sizeof(short int));
+
+ //The next block of code retrieves the image colour values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ for(j=0;j<img.cols;j++)
+ *(r + i*img.rows+ j)=img.at<short>(i, j);
+
+ //Adding the image colour value matrix to the list
+ sciErr = createMatrixOfInteger16InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols,r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ }
+ }
+ else if(strcmp(checker,"32S")==0) //for Signed Integer 16
+ {
+ if(num==3)
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ int *r = (int *)malloc(img.rows * img.cols * sizeof(int));
+ int *g = (int *)malloc(img.rows * img.cols * sizeof(int));
+ int *b = (int *)malloc(img.rows * img.cols * sizeof(int));
+ //The next block of code retrieves the RGB values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ {
+ for(j=0;j<img.cols;j++)
+ {
+ Vec3i intensity = img.at<Vec3i>(i, j);
+ *(r + i*img.rows + j)=intensity.val[2];
+ *(g + i*img.rows + j)=intensity.val[1];
+ *(b + i*img.rows + j)=intensity.val[0];
+ }
+ }
+
+ //Adding the R value matrix to the list
+ sciErr = createMatrixOfInteger32InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols,r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the G value matrix to the list
+ sciErr = createMatrixOfInteger32InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 2, img.rows,img.cols,g);
+ free(g);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the B value matrix to the list
+ sciErr = createMatrixOfInteger32InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 3, img.rows,img.cols,b);
+ free(b);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+ else
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ int *r = (int *)malloc(img.rows * img.cols * sizeof(int));
+
+ //The next block of code retrieves the image colour values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ for(j=0;j<img.cols;j++)
+ *(r + i*img.rows+ j)=img.at<int>(i, j);
+
+ //Adding the image colour value matrix to the list
+ sciErr = createMatrixOfInteger32InList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1,img.rows,img.cols, r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ }
+ }
+
+ else if(strcmp(checker,"32F")==0) //for Float 32
+ {
+ if(num==3)
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ double *r = (double *)malloc(img.rows * img.cols * sizeof(double));
+ double *g = (double *)malloc(img.rows * img.cols * sizeof(double));
+ double *b = (double *)malloc(img.rows * img.cols * sizeof(double));
+ //The next block of code retrieves the RGB values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ {
+ for(j=0;j<img.cols;j++)
+ {
+ Vec3d intensity = img.at<Vec3d>(i, j);
+ *(r + i*img.rows + j)=intensity.val[2];
+ *(g + i*img.rows + j)=intensity.val[1];
+ *(b + i*img.rows + j)=intensity.val[0];
+ }
+ }
+
+ //Adding the R value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols,r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the G value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 2, img.rows,img.cols,g);
+ free(g);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the B value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 3, img.rows,img.cols,b);
+ free(b);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+ else
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ double *r = (double *)malloc(img.rows * img.cols * sizeof(double));
+ //The next block of code retrieves the image colour values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ for(j=0;j<img.cols;j++)
+ *(r + i*img.rows+ j)=img.at<float>(i, j);
+
+ //Adding the image colour value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1,img.rows,img.cols,r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+ }
+ else if(strcmp(checker,"64F")==0) //For Float 64
+ {
+ if(num==3)
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ double *r = (double *)malloc(img.rows * img.cols * sizeof(double));
+ double *g = (double *)malloc(img.rows * img.cols * sizeof(double));
+ double *b = (double *)malloc(img.rows * img.cols * sizeof(double));
+ //The next block of code retrieves the RGB values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ {
+ for(j=0;j<img.cols;j++)
+ {
+ Vec3d intensity = img.at<Vec3d>(i, j);
+ *(r + i*img.rows + j)=intensity.val[2];
+ *(g + i*img.rows + j)=intensity.val[1];
+ *(b + i*img.rows + j)=intensity.val[0];
+ }
+ }
+
+ //Adding the R value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols,r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the G value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 2, img.rows,img.cols,g);
+ free(g);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+
+ //Adding the B value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 3, img.rows,img.cols, b);
+ free(b);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+ else
+ {
+ //Since we need to pass a single pointer as an arguement, for a 2-D matrix, we define it in this manner
+ double *r = (double *)malloc(img.rows * img.cols * sizeof(double));
+
+ //The next block of code retrieves the image colour values at a specified pixel, and assigns it to the matrices
+ for(i=0;i<img.rows;i++)
+ for(j=0;j<img.cols;j++)
+ *(r + i*img.rows + j)=img.at<double>(i, j);
+
+ //Adding the image colour value matrix to the list
+ sciErr = createMatrixOfDoubleInList(pvApiCtx, nbInputArgument(pvApiCtx)+pos , piAddrNew, 1, img.rows,img.cols, r);
+ free(r);
+ if(sciErr.iErr)
+ {
+ printError(&sciErr, 0);
+ return 0;
+ }
+ }
+ }
+
+}