diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /thirdparty1/linux/include/opencv2/tracking/onlineBoosting.hpp | |
download | FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.gz FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.tar.bz2 FOSSEE_Image_Processing_Toolbox-a6df67e8bcd5159cde27556f4f6a315f8dc2215f.zip |
Diffstat (limited to 'thirdparty1/linux/include/opencv2/tracking/onlineBoosting.hpp')
-rw-r--r-- | thirdparty1/linux/include/opencv2/tracking/onlineBoosting.hpp | 288 |
1 files changed, 288 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/tracking/onlineBoosting.hpp b/thirdparty1/linux/include/opencv2/tracking/onlineBoosting.hpp new file mode 100644 index 0000000..982bc20 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/tracking/onlineBoosting.hpp @@ -0,0 +1,288 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// + // + // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + // + // By downloading, copying, installing or using the software you agree to this license. + // If you do not agree to this license, do not download, install, + // copy or use the software. + // + // + // License Agreement + // For Open Source Computer Vision Library + // + // Copyright (C) 2013, OpenCV Foundation, all rights reserved. + // Third party copyrights are property of their respective owners. + // + // Redistribution and use in source and binary forms, with or without modification, + // are permitted provided that the following conditions are met: + // + // * Redistribution's of source code must retain the above copyright notice, + // this list of conditions and the following disclaimer. + // + // * Redistribution's in binary form must reproduce the above copyright notice, + // this list of conditions and the following disclaimer in the documentation + // and/or other materials provided with the distribution. + // + // * The name of the copyright holders may not be used to endorse or promote products + // derived from this software without specific prior written permission. + // + // This software is provided by the copyright holders and contributors "as is" and + // any express or implied warranties, including, but not limited to, the implied + // warranties of merchantability and fitness for a particular purpose are disclaimed. + // In no event shall the Intel Corporation or contributors be liable for any direct, + // indirect, incidental, special, exemplary, or consequential damages + // (including, but not limited to, procurement of substitute goods or services; + // loss of use, data, or profits; or business interruption) however caused + // and on any theory of liability, whether in contract, strict liability, + // or tort (including negligence or otherwise) arising in any way out of + // the use of this software, even if advised of the possibility of such damage. + // + //M*/ + +#ifndef __OPENCV_ONLINEBOOSTING_HPP__ +#define __OPENCV_ONLINEBOOSTING_HPP__ + +#include "opencv2/core.hpp" + +namespace cv +{ + +//! @addtogroup tracking +//! @{ + +//TODO based on the original implementation +//http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml + +class BaseClassifier; +class WeakClassifierHaarFeature; +class EstimatedGaussDistribution; +class ClassifierThreshold; +class Detector; + +class StrongClassifierDirectSelection +{ + public: + + StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit = + 0 ); + virtual ~StrongClassifierDirectSelection(); + + void initBaseClassifier(); + + bool update( const Mat& image, int target, float importance = 1.0 ); + float eval( const Mat& response ); + std::vector<int> getSelectedWeakClassifier(); + float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx ); + int getNumBaseClassifier(); + Size getPatchSize() const; + Rect getROI() const; + bool getUseFeatureExchange() const; + int getReplacedClassifier() const; + + void replaceWeakClassifier( int idx ); + int getSwappedClassifier() const; + private: + + //StrongClassifier + int numBaseClassifier; + int numAllWeakClassifier; + int numWeakClassifier; + int iterInit; + BaseClassifier** baseClassifier; + std::vector<float> alpha; + cv::Size patchSize; + + bool useFeatureExchange; + + //StrongClassifierDirectSelection + std::vector<bool> m_errorMask; + std::vector<float> m_errors; + std::vector<float> m_sumErrors; + + Detector* detector; + Rect ROI; + + int replacedClassifier; + int swappedClassifier; +}; + +class BaseClassifier +{ + public: + + BaseClassifier( int numWeakClassifier, int iterationInit ); + BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls ); + + WeakClassifierHaarFeature** getReferenceWeakClassifier() + { + return weakClassifier; + } + ; + void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask ); + int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors ); + int computeReplaceWeakestClassifier( const std::vector<float> & errors ); + void replaceClassifierStatistic( int sourceIndex, int targetIndex ); + int getIdxOfNewWeakClassifier() + { + return m_idxOfNewWeakClassifier; + } + ; + int eval( const Mat& image ); + virtual ~BaseClassifier(); + float getError( int curWeakClassifier ); + void getErrors( float* errors ); + int getSelectedClassifier() const; + void replaceWeakClassifier( int index ); + + protected: + + void generateRandomClassifier(); + WeakClassifierHaarFeature** weakClassifier; + bool m_referenceWeakClassifier; + int m_numWeakClassifier; + int m_selectedClassifier; + int m_idxOfNewWeakClassifier; + std::vector<float> m_wCorrect; + std::vector<float> m_wWrong; + int m_iterationInit; + +}; + +class EstimatedGaussDistribution +{ + public: + + EstimatedGaussDistribution(); + EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma ); + virtual ~EstimatedGaussDistribution(); + void update( float value ); //, float timeConstant = -1.0); + float getMean(); + float getSigma(); + void setValues( float mean, float sigma ); + + private: + + float m_mean; + float m_sigma; + float m_P_mean; + float m_P_sigma; + float m_R_mean; + float m_R_sigma; +}; + +class WeakClassifierHaarFeature +{ + + public: + + WeakClassifierHaarFeature(); + virtual ~WeakClassifierHaarFeature(); + + bool update( float value, int target ); + int eval( float value ); + + private: + + float sigma; + float mean; + ClassifierThreshold* m_classifier; + + void getInitialDistribution( EstimatedGaussDistribution *distribution ); + void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples ); + +}; + +class Detector +{ + public: + + Detector( StrongClassifierDirectSelection* classifier ); + virtual + ~Detector( void ); + + void + classifySmooth( const std::vector<Mat>& image, float minMargin = 0 ); + + int + getNumDetections(); + float + getConfidence( int patchIdx ); + float + getConfidenceOfDetection( int detectionIdx ); + + float getConfidenceOfBestDetection() + { + return m_maxConfidence; + } + ; + int + getPatchIdxOfBestDetection(); + + int + getPatchIdxOfDetection( int detectionIdx ); + + const std::vector<int> & + getIdxDetections() const + { + return m_idxDetections; + } + ; + const std::vector<float> & + getConfidences() const + { + return m_confidences; + } + ; + + const cv::Mat & + getConfImageDisplay() const + { + return m_confImageDisplay; + } + + private: + + void + prepareConfidencesMemory( int numPatches ); + void + prepareDetectionsMemory( int numDetections ); + + StrongClassifierDirectSelection* m_classifier; + std::vector<float> m_confidences; + int m_sizeConfidences; + int m_numDetections; + std::vector<int> m_idxDetections; + int m_sizeDetections; + int m_idxBestDetection; + float m_maxConfidence; + cv::Mat_<float> m_confMatrix; + cv::Mat_<float> m_confMatrixSmooth; + cv::Mat_<unsigned char> m_confImageDisplay; +}; + +class ClassifierThreshold +{ + public: + + ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples ); + virtual ~ClassifierThreshold(); + + void update( float value, int target ); + int eval( float value ); + + void* getDistribution( int target ); + + private: + + EstimatedGaussDistribution* m_posSamples; + EstimatedGaussDistribution* m_negSamples; + + float m_threshold; + int m_parity; +}; + +//! @} + +} /* namespace cv */ + +#endif |