diff options
author | shamikam | 2017-01-16 02:56:17 +0530 |
---|---|---|
committer | shamikam | 2017-01-16 02:56:17 +0530 |
commit | a6df67e8bcd5159cde27556f4f6a315f8dc2215f (patch) | |
tree | e806e966b06a53388fb300d89534354b222c2cad /thirdparty1/linux/include/opencv2/stereo/descriptor.hpp | |
download | FOSSEE_Image_Processing_Toolbox-master.tar.gz FOSSEE_Image_Processing_Toolbox-master.tar.bz2 FOSSEE_Image_Processing_Toolbox-master.zip |
Diffstat (limited to 'thirdparty1/linux/include/opencv2/stereo/descriptor.hpp')
-rw-r--r-- | thirdparty1/linux/include/opencv2/stereo/descriptor.hpp | 452 |
1 files changed, 452 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/stereo/descriptor.hpp b/thirdparty1/linux/include/opencv2/stereo/descriptor.hpp new file mode 100644 index 0000000..bdbd7ce --- /dev/null +++ b/thirdparty1/linux/include/opencv2/stereo/descriptor.hpp @@ -0,0 +1,452 @@ +//By downloading, copying, installing or using the software you agree to this license. +//If you do not agree to this license, do not download, install, +//copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// (3-clause BSD License) +// +//Copyright (C) 2000-2015, Intel Corporation, all rights reserved. +//Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +//Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved. +//Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. +//Copyright (C) 2015, OpenCV Foundation, all rights reserved. +//Copyright (C) 2015, Itseez Inc., all rights reserved. +//Third party copyrights are property of their respective owners. +// +//Redistribution and use in source and binary forms, with or without modification, +//are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * Neither the names of the copyright holders nor the names of the contributors +// may be used to endorse or promote products derived from this software +// without specific prior written permission. +// +//This software is provided by the copyright holders and contributors "as is" and +//any express or implied warranties, including, but not limited to, the implied +//warranties of merchantability and fitness for a particular purpose are disclaimed. +//In no event shall copyright holders or contributors be liable for any direct, +//indirect, incidental, special, exemplary, or consequential damages +//(including, but not limited to, procurement of substitute goods or services; +//loss of use, data, or profits; or business interruption) however caused +//and on any theory of liability, whether in contract, strict liability, +//or tort (including negligence or otherwise) arising in any way out of +//the use of this software, even if advised of the possibility of such damage. + +/*****************************************************************************************************************\ +* The interface contains the main descriptors that will be implemented in the descriptor class * +\*****************************************************************************************************************/ + +#include <stdint.h> +#ifndef _OPENCV_DESCRIPTOR_HPP_ +#define _OPENCV_DESCRIPTOR_HPP_ +#ifdef __cplusplus + +namespace cv +{ + namespace stereo + { + //types of supported kernels + enum { + CV_DENSE_CENSUS, CV_SPARSE_CENSUS, + CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM, + CV_MEAN_VARIATION, CV_STAR_KERNEL + }; + //!Mean Variation is a robust kernel that compares a pixel + //!not just with the center but also with the mean of the window + template<int num_images> + struct MVKernel + { + uint8_t *image[num_images]; + int *integralImage[num_images]; + int stop; + MVKernel(){} + MVKernel(uint8_t **images, int **integral) + { + for(int i = 0; i < num_images; i++) + { + image[i] = images[i]; + integralImage[i] = integral[i]; + } + stop = num_images; + } + void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const + { + (void)w2; + for (int i = 0; i < stop; i++) + { + if (image[i][rrWidth + jj] > image[i][rWidth + j]) + { + c[i] = c[i] + 1; + } + c[i] = c[i] << 1; + if (integralImage[i][rrWidth + jj] > image[i][rWidth + j]) + { + c[i] = c[i] + 1; + } + c[i] = c[i] << 1; + } + } + }; + //!Compares pixels from a patch giving high weights to pixels in which + //!the intensity is higher. The other pixels receive a lower weight + template <int num_images> + struct MCTKernel + { + uint8_t *image[num_images]; + int t,imageStop; + MCTKernel(){} + MCTKernel(uint8_t ** images, int threshold) + { + for(int i = 0; i < num_images; i++) + { + image[i] = images[i]; + } + imageStop = num_images; + t = threshold; + } + void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const + { + (void)w2; + for(int i = 0; i < imageStop; i++) + { + if (image[i][rrWidth + jj] > image[i][rWidth + j] - t) + { + c[i] = c[i] << 1; + c[i] = c[i] + 1; + c[i] = c[i] << 1; + c[i] = c[i] + 1; + } + else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj]) + { + c[i] = c[i] << 2; + c[i] = c[i] + 1; + } + else + { + c[i] <<= 2; + } + } + } + }; + //!A madified cs census that compares a pixel with the imediat neightbour starting + //!from the center + template<int num_images> + struct ModifiedCsCensus + { + uint8_t *image[num_images]; + int n2; + int imageStop; + ModifiedCsCensus(){} + ModifiedCsCensus(uint8_t **images, int ker) + { + for(int i = 0; i < num_images; i++) + image[i] = images[i]; + imageStop = num_images; + n2 = ker; + } + void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const + { + (void)j; + (void)rWidth; + for(int i = 0; i < imageStop; i++) + { + if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))]) + { + c[i] = c[i] + 1; + } + c[i] = c[i] * 2; + } + } + }; + //!A kernel in which a pixel is compared with the center of the window + template<int num_images> + struct CensusKernel + { + uint8_t *image[num_images]; + int imageStop; + CensusKernel(){} + CensusKernel(uint8_t **images) + { + for(int i = 0; i < num_images; i++) + image[i] = images[i]; + imageStop = num_images; + } + void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const + { + (void)w2; + for(int i = 0; i < imageStop; i++) + { + ////compare a pixel with the center from the kernel + if (image[i][rrWidth + jj] > image[i][rWidth + j]) + { + c[i] += 1; + } + c[i] <<= 1; + } + } + }; + //template clas which efficiently combines the descriptors + template <int step_start, int step_end, int step_inc,int nr_img, typename Kernel> + class CombinedDescriptor:public ParallelLoopBody + { + private: + int width, height,n2; + int stride_; + int *dst[nr_img]; + Kernel kernel_; + int n2_stop; + public: + CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop) + { + width = w; + height = h; + n2 = k2; + stride_ = stride; + for(int i = 0; i < nr_img; i++) + dst[i] = distance[i]; + kernel_ = kernel; + n2_stop = k2Stop; + } + void operator()(const cv::Range &r) const { + for (int i = r.start; i <= r.end ; i++) + { + int rWidth = i * stride_; + for (int j = n2 + 2; j <= width - n2 - 2; j++) + { + int c[nr_img]; + memset(c,0,nr_img); + for(int step = step_start; step <= step_end; step += step_inc) + { + for (int ii = - n2; ii <= + n2_stop; ii += step) + { + int rrWidth = (ii + i) * stride_; + int rrWidthC = (ii + i + n2) * stride_; + for (int jj = j - n2; jj <= j + n2; jj += step) + { + if (ii != i || jj != j) + { + kernel_(rrWidth,rrWidthC, rWidth, jj, j,c); + } + } + } + } + for(int l = 0; l < nr_img; l++) + dst[l][rWidth + j] = c[l]; + } + } + } + }; + //!calculate the mean of every windowSizexWindwoSize block from the integral Image + //!this is a preprocessing for MV kernel + class MeanKernelIntegralImage : public ParallelLoopBody + { + private: + int *img; + int windowSize,width; + float scalling; + int *c; + public: + MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost): + img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){}; + void operator()(const cv::Range &r) const{ + for (int i = r.start; i <= r.end; i++) + { + int iw = i * width; + for (int j = windowSize + 1; j <= width - windowSize - 1; j++) + { + c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1] + - img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling); + } + } + } + }; + //!implementation for the star kernel descriptor + template<int num_images> + class StarKernelCensus:public ParallelLoopBody + { + private: + uint8_t *image[num_images]; + int *dst[num_images]; + int n2, width, height, im_num,stride_; + public: + StarKernelCensus(const cv::Mat *img, int k2, int **distance) + { + for(int i = 0; i < num_images; i++) + { + image[i] = img[i].data; + dst[i] = distance[i]; + } + n2 = k2; + width = img[0].cols; + height = img[0].rows; + im_num = num_images; + stride_ = (int)img[0].step; + } + void operator()(const cv::Range &r) const { + for (int i = r.start; i <= r.end ; i++) + { + int rWidth = i * stride_; + for (int j = n2; j <= width - n2; j++) + { + for(int d = 0 ; d < im_num; d++) + { + int c = 0; + for(int step = 4; step > 0; step--) + { + for (int ii = i - step; ii <= i + step; ii += step) + { + int rrWidth = ii * stride_; + for (int jj = j - step; jj <= j + step; jj += step) + { + if (image[d][rrWidth + jj] > image[d][rWidth + j]) + { + c = c + 1; + } + c = c * 2; + } + } + } + for (int ii = -1; ii <= +1; ii++) + { + int rrWidth = (ii + i) * stride_; + if (i == -1) + { + if (ii + i != i) + { + if (image[d][rrWidth + j] > image[d][rWidth + j]) + { + c = c + 1; + } + c = c * 2; + } + } + else if (i == 0) + { + for (int j2 = -1; j2 <= 1; j2 += 2) + { + if (ii + i != i) + { + if (image[d][rrWidth + j + j2] > image[d][rWidth + j]) + { + c = c + 1; + } + c = c * 2; + } + } + } + else + { + if (ii + i != i) + { + if (image[d][rrWidth + j] > image[d][rWidth + j]) + { + c = c + 1; + } + c = c * 2; + } + } + } + dst[d][rWidth + j] = c; + } + } + } + } + }; + //!paralel implementation of the center symetric census + template <int num_images> + class SymetricCensus:public ParallelLoopBody + { + private: + uint8_t *image[num_images]; + int *dst[num_images]; + int n2, width, height, im_num,stride_; + public: + SymetricCensus(const cv::Mat *img, int k2, int **distance) + { + for(int i = 0; i < num_images; i++) + { + image[i] = img[i].data; + dst[i] = distance[i]; + } + n2 = k2; + width = img[0].cols; + height = img[0].rows; + im_num = num_images; + stride_ = (int)img[0].step; + } + void operator()(const cv::Range &r) const { + for (int i = r.start; i <= r.end ; i++) + { + int distV = i*stride_; + for (int j = n2; j <= width - n2; j++) + { + for(int d = 0; d < im_num; d++) + { + int c = 0; + //the classic center symetric census which compares the curent pixel with its symetric not its center. + for (int ii = -n2; ii <= 0; ii++) + { + int rrWidth = (ii + i) * stride_; + for (int jj = -n2; jj <= +n2; jj++) + { + if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)]) + { + c = c + 1; + } + c = c * 2; + if(ii == 0 && jj < 0) + { + if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)]) + { + c = c + 1; + } + c = c * 2; + } + } + } + dst[d][(distV + j)] = c; + } + } + } + } + }; + /** + Two variations of census applied on input images + Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes + **/ + //void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type); + CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type); + //single image census transform + CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type); + /** + STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison + MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel + **/ + CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1)); + //single version of modified census transform descriptor + CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1)); + /**The classical center symetric census + A modified version of cs census which is comparing a pixel with its correspondent after the center + **/ + CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type); + //single version of census transform + CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type); + //in a 9x9 kernel only certain positions are choosen + CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2); + //single image version of star kernel + CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist); + //integral image computation used in the Mean Variation Census Transform + void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c); + } +} +#endif +#endif +/*End of file*/ |